METLAB BiopsyToolbox












Young Scientist Colloquium, Monday, October 24th, 16.00 ct, IGSN seminar room FNO 01/117: "How do we perceive the world around us: On faces, bodies and spatial relations”
1. How children and adults represent individual faces despite image variation: An fMRI adaptation study (Marisa Nordt, MSc, Developmental Neuropsychology, Department of Psychology, RUB)
Is the whole the sum of its parts? Configural processing of headless bodies in the right fusiform gyrus (Dr. Denise Soria Bauser, Department of Neuropsychology, Institute of Cognitive Neuroscience, RUB)
3. Toward the grounding of language in a neural-dynamic model (Mathis Richter, MSc, Embodied Cognition Group, Institute for Neuroinformatics, RUB)


Ruhr-Universität Bochum
Fakultät für Psychologie
AE Biopsychologie
GAFO 05/618
D-44780 Bochum

Phone: +49 234 - 32 28213
Fax: +49 234 - 32 14377


News & Views

If you recognize this as English, you may be a pigeon

According to a new study published by biopsychologists from Bochum and the University of Otago (New Zealand), pigeons are able to discriminate English words from non-words. And they do this by orthographic rules that are identical to those used by humans. This enormous ability demonstrates that orthographic knowledge is no privilege of humans or primates but can be mastered by an animal with just 2.5 gram of brain. To demonstrate this feat, scientists first taught the birds top peck on words (e.g. DONE) shown on a monitor to obtain food. Pecking on non-words (e.g. DNOE) was not rewarded. Slowly the animals learned more and more English words (depending on the individual between 26 and 58) and discriminated them from non-words (about 8,000). Then came the real test: Pigeons were confronted with entirely new English words and non-words. The animals spontaneously discriminated successfully between the two groups of stimuli. Thus, they had learned what is typical for an English word. But how did they do this? A deeper analysis demonstrated that pigeons used two strategies. One was to use the frequency of bigrams in English. The word DONE has three bigrams: DO, ON, and NE. Their average bigram frequency is much higher than those of DN, NO, and OE in the non-word DNOE. The second strategy was the Levenshtein distance between two words which is the minimum number of single-character edits (i.e. insertions, deletions or substitutions) required to change one word into the other. Also humans utilize these two strategies for these kinds of decisions. The brains of birds and humans are vastly different. If still both species use the same strategy, it is likely that evolutionary selection pressure to identify regularities of input statistics are the relevant force that shaped brains during evolution. Whatever the genetically determined general outline of the brain of an animal was, its internal computations had to have the blueprint to solve these tasks. Within one week after its appearance, this paper was among the top 99.95% of all 6,365,760 scientific publications registered so far with respect to international media attention.

Scarf, D., Boy, K., Über Reinert, A., Devine, J., Güntürkün, O. and Colombo, M., Orthographic Processing in Pigeons (Columba livia), PNAS 2016, 113: 11272-11276.


News & Views

PhD Thesis Rena Klose

On Wednesday, the 24th of August 2016, Rena defended her PhD thesis entitled „ How visual asymmetry starts in pigeons: Characterizing Melanopsin as a potential inducer “. It was just awesome. Rena had tons of data to show, was able to answer each and every question (even the extremely vague ones) and flabbergasted the reviewers by the breadth, ingenuity, and complexity of her experiments and conclusions. Accordingly, the committee unanimously decided that she had performed extremely well and decided to award her the title of a Dr. rer. nat. with magna cum laude. Afterwards everybody could enjoy a party. On the picture Rena is depicted with the whole lab that had good reasons to celebrate one more great scientist from the Biopsychology.

Congratulations Rena! We are proud of you!


News & Views

„Rational animals?“ interdisciplinary workshop held in Bochum

From October 4th to 6th 2016, the interdisciplinary workshop “Rational animals? – Comparing human and animal minds from an interdisciplinary perspective” was held at the Ruhr-University Bochum, organized in a joint venture by the Department of Philosophy II and the Biopsychology department. Philosophers, behavioral researchers and neuroscientists from 9 different countries discussed over the course of three days recent findings on the cognitive abilities of non-human animals and how to interpret these findings in the light of modern neuroscience and philosophy. Over 50 participants joint the workshop, listening to talks, visiting a poster session and taking part in several discussion rounds. Although the question if non-human animals are indeed rational could not be answered thoroughly, the workshop was perceived to be highly successful by both the participants and the organizers. Especially for the biopsychology department the workshop proved to be highly successful since two members of our department won the first (Stephanie Lor) and second price (Mehdi Behroozi) for their scientific posters. Steffi & Mehdi congratulations! 


News & Views

PhD Thesis Clara Quetscher

On Friday, the 19th of August 2016, Clara defended her PhD thesis entitled „Stratiales GABA und Handlungskontrolle  –  Eine kombinierte EEG-, MRS- und fMRI-Untersuchung“. After giving a brilliant presentation, she answered all questions in her typical calm but absolutely clear way. Even the long, rambling and vague questions that were asked by one of the examiners did little to her absolutely solid standing. Accordingly, the committee unanimously decided that she had performed extremely well and decided to award her the title of a Dr. rer. nat. with magna cum laude. Afterwards everybody could enjoy sparkling wine in brilliant sunshine.

Congratulations Clara! We are proud of you!






News & Views

E-Book on Extinction Learning

Throughout life, we learn to associate stimuli with their consequences. But some of the new information that we encounter forces us to abandon what we had previously acquired. This old information is then subject to a new learning process that is called extinction learning that is extremely complex and involves a large number of brain structures. To provide a most recent update on research on extinction learning, Denise Manahan-Vaughan, Onur Güntürkün and Oliver Wolf from the Ruhr-University came together to create an open-access Frontier Research Topic e-book. Their publishing strategy departed from the formulation of three aims: First, the e-book should incorporate studies that analyze the concert of neural structures that enable extinction learning. Second, the book had to include papers that are situated at the transition between basic and clinical neuroscience. Third, the book should cover papers on the uncharted territories of extinction learning, involve less-studied entities such as the immune system or hormonal factors, or less-studied species or novel paradigms. Last but not least, the book had to have a stunning cover. This was achievedwWith the support and the courtesy of Erhan Genç (see yourself). A very large number of leading international scientists contributed to this book and turned it into a huge success. As a result, the e-book offers brand new and valuable insights into the mechanisms and the functional implementation of extinction learning at its different levels of complexity. It thus also forms the basis for new concepts and research ideas in this field. The book can be downloaded for free here.


Manahan-Vaughan, D., Güntürkün, O., Wolf, O. T., eds. (2016). Extinction Learning from a Mechanistic and Systems Perspective. Lausanne: Frontiers Media. doi: 10.3389/978-2-88919-908-2.


News & Views Archive

See older News & Views