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Abstract
The exceptional navigational capabilities of migrating birds are based on the perception and integration of a variety of natural 
orientation cues. The “Wulst” in the forebrain of night-migratory songbirds contains a brain area named “Cluster N”, which 
is involved in processing directional navigational information derived from the Earth´s magnetic field. Cluster N is medially 
joined by the hippocampal formation, known to retrieve and utilise navigational information. To investigate the connectivity 
and neurochemical characteristics of Cluster N and the hippocampal formation of migratory birds, we performed morpho-
logical and histochemical analyses based on the expression of calbindin, calretinin, parvalbumin, glutamate receptor type 1 
and early growth response protein-1 in the night-migratory Garden warbler (Sylvia borin) and mapped their mutual connec-
tions using neuronal tract tracing. The resulting expression patterns revealed regionally restricted neurochemical features, 
which mapped well onto the hippocampal and hyperpallial substructures known from other avian species. Magnetic field-
induced neuronal activation covered caudal parts of the hyperpallium and the medially adjacent hippocampal dorsomedial/
dorsolateral subdivisions. Neuronal tract tracings revealed connections between Cluster N and the hippocampal formation 
with the vast majority originating from the densocellular hyperpallium, either directly or indirectly via the area corticoidea 
dorsolateralis. Our data indicate that the densocellular hyperpallium could represent a central relay for the transmission of 
magnetic compass information to the hippocampal formation where it might be integrated with other navigational cues in 
night-migratory songbirds.
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Abbreviations
Cb	� Cerebellum
CDL	� Dorsolateral corticoid area
ClN	� Cluster N
DL	� Dorsolateral hippocampal subdivision

DLd	� Dorsal part of the dorsolateral hippocampal 
subdivision

DLL	� Nucleus dorsolateralis anterior thalami, pars 
lateralis

DLv	� Ventral part of the dorsolateral hippocampal 
subdivision

DM	� Dorsomedial hippocampal subdivision
DMd	� Dorsal part of the dorsomedial hippocampal 

subdivision
DMv	� Ventral part of the dorsomedial hippocampal 

subdivision
DNH	� Dorsal nucleus of the hyperpallium
FPL	� Fasciculus prosencephali longitudinalis
GLd	� Thalamic dorsolateral geniculate complex
H	� Hyperpallium
HA	� Hyperpallium apicale
HAd	� Dorsal part of hyperpallium apicale
HAv	� Ventral part of hyperpallium apicale
HD	� Hyperpallium densocellulare
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HF	� Hippocampal formation
HI	� Hyperpallium intercalatum
HL	� Hyperpallium laterale
IHA	� Intercalated part of hyperpallium apicale
LdOPT	� Nucleus lateralis dorsalis nuclei optici principa-

lis thalami
LFS	� Frontal superior lamina
M	� Mesopallium
MD	� Mesopallium dorsale
MV	� Ventral mesopallium
N	� Nidopallium
OT	� Optic tectum
Rt	� Nucleus rotundus
Tel	� Telencephalon
Tr	� Triangular hippocampal subdivision
TSM	� Tractus septopallio-mesencephalicus
V	� V-shaped hippocampal subdivision
Vl	� Lateral V-shaped hippocampal subdivision
Vm	� Medial V-shaped hippocampal subdivision

Introduction

The avian “Wulst” represents an elevated structure on the 
dorsomedial aspect of the forebrain which strongly differs in 
its extent between bird species. It is bounded laterally by the 
vallecula and can roughly be subdivided into a rostral (soma-
tosensory) and a caudal (visual) subdivision. The Wulst con-
sists of four hyperpallial laminae, i.e. the hyperpallium api-
cale (HA), intercalated part of hyperpallium apicale (IHA), 
hyperpallium intercalatum (HI) and hyperpallium densocel-
lulare (HD) (Reiner et al. 2004; Jarvis et al. 2005; Fig. 1). 
The hyperpallium represents the major termination area for 
input from the thalamofugal visual pathway in birds (for 
review, see Güntürkün et al. 1993; Güntürkün 2000; Mour-
itsen et al. 2016). Its precise role in vision has long remained 
enigmatic, because earlier lesion studies revealed little to 
no effects on e.g. pattern, colour or intensity discrimination 
and visual acuity. Only later it was shown that the largest, 
posterior part comprises components of highly complex neu-
ronal networks underlying various aspects of visual percep-
tion, e.g. contour discrimination (Nieder and Wagner 1999; 
Budzynski and Bingman 2004) and it was suggested to be 
involved in navigation- and orientation-related processes, 
such as sun compass associative learning (Budzinsky et al. 
2002). More recently, a cluster of brain areas in the lateral 
posterior Wulst, “Cluster N” (Fig. 1), was repeatedly shown 
to display strongly increased neuronal activation in several 
night-migratory songbird species when performing magnetic 
compass orientation under low-light conditions (Mouritsen 
et al. 2005; Heyers et al. 2007; Liedvogel et al. 2007a; Hein 
et al. 2010; Zapka et al. 2009; 2010; Rastogi et al. 2011; 
Wu and Dickman 2011; Elbers et al. 2017). Activation of 

Cluster N is triggered by low-light vision and could not be 
observed in resident songbirds and/or species migrating dur-
ing day (Mouritsen et al. 2005; Zapka et al. 2010). Based 
on these findings, Mouritsen et al. (2005) proposed that 
this night-vision processing could be related to a vision-
mediated magnetic compass based on radical-pair-forming 
sensor molecules, cryptochromes, located in the birds eyes 
(Ritz et al. 2000; Hore and Mouritsen 2016; Mouritsen 
2018, 2021). Cryptochromes are currently considered the 
most likely molecular basis for a radical pair-based magnetic 
compass sense in birds (Möller et al. 2004; Mouritsen et al. 
2004b; Liedvogel et al. 2007b; Niessner et al. 2011, 2016; 
Bolte et al. 2016, 2021; Hore and Mouritsen 2016; Günther 
et al. 2018; Zoltowski et al. 2019; Einwich et al. 2020, 2021; 
Xu et al. 2021). Connectivity studies have shown that the 
eye and Cluster N are interconnected via parts of the thala-
mofugal visual pathway (Heyers et al. 2007). Currently, the 
suggestion that Cluster N is part of a neural circuit process-
ing magnetic compass information is strongly supported 
by a study, which showed that, when Cluster N is chemi-
cally lesioned, night-migratory European Robins (Erithacus 
rubecula) are unable to use their magnetic compass, whereas 
their sun and star compasses are unaffected (Zapka et al. 
2009).

At its caudal end, the Wulst is medially joined by the 
hippocampal formation (HF; Fig. 1), which can be roughly 
subdivided into a dorsolateral (DL), dorsomedial (DM) and 
a ventrally attached V-shaped region (Atoji and Wild 2004; 
Herold et al. 2014, 2019; Striedter 2016). Compelling evi-
dence implicate the HF in spatial orientation, cognition and 
memory (Casini et al. 1997; Mayer et al. 2013; Herold et al. 
2015; Sherry et al. 2017; Gagliardo et al. 2020): (1) varia-
tions in hippocampal morphology were shown to correlate 
with migratory behaviour (e.g. Krebs et al. 1989; Pravo-
sudov et al. 2006; Bingman and MacDougall-Shackleton 

Fig. 1   Schematic of the location of the hyperpallium and the hip-
pocampal formation within the Garden warbler brain, sagittal view
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2017); (2) HF subdivisions seem to display increased neu-
ronal activation-triggered expression levels of immediate 
early genes in pigeons (Columba livia) when navigating 
by familiar landmarks within their home range (Shimizu 
et al. 2004), during the formation of spatial memory (Var-
gas et al. 2004) in a context-dependent manner in cowbirds 
(Molothrus ater) as they navigate through space (Grella 
et al. 2016), and in zebra finches (Taeniopygia guttata) when 
stimulated by magnetic fields (Keary and Bischof 2012); 
(3) single neuronal subpopulations in the pigeon’s HF were 
also reported to increase their firing rates following mag-
netic stimulation (Vargas et al. 2006); (4) recent evidence 
from Japanese quails (Coturnix coturnix) suggests the exist-
ence of avian analogues to mammalian head direction cells 
within HF (Ben Yishay et al. 2021); (5) place cells have been 
detected in the HF of tufted titmice (Parus bicolor), which 
are food-caching birds able to remember hundreds of loca-
tions for food caches (Sherry and Hoshooley 2007; Payne 
et al. 2021) as well as in pigeons (Hough and Bingman 2004; 
2008); (6) recently, it has been shown that lesions of the HF 
of pigeons were found to disrupt a pigeon´s learned ability 
to discriminate magnetic intensity changes (Bingman et al. 
2021).

Migratory birds will almost certainly have a particularly 
high need to integrate navigational information from vari-
ous sensory sources to calculate their intended headings. 
However, until now, the morphological and biochemical 
characteristics and connectivity of Cluster N and the HF in 
migratory birds have remained elusive. In addition, Clus-
ter N could only be characterized functionally based on 
behavioural molecular mapping techniques requiring time-
consuming and carefully controlled behavioural experiments 
(Mouritsen et al. 2005; Heyers et al. 2007; Liedvogel et al. 
2007a; Hein et al. 2010; Zapka et al. 2010; Rastogi et al. 
2011; Wu and Dickman 2011; Elbers et al. 2017) based on 
the detection of immediate early genes, such as early growth 
response protein-1 (Egr-1, also known as ZENK), whose 
expression is driven by neuronal activation (Mello and Clay-
ton 1995; Jarvis and Nottebohm 1997).

Thus, the aims of this study were to anatomically char-
acterize both Cluster N and HF in a night-migrating song-
bird species using biochemical markers, which would then 
allow us to place both structures into the general avian 
neurochemical forebrain network. In addition, we aimed to 
specify potential connections from Cluster N with which 
magnetic compass information could reach HF for poten-
tial integration with other navigational cues. To do so, we 
mapped magnetic orientation-induced neuronal activation 
in the Wulst of Garden warblers (Sylvia borin), which rep-
resents the first species in which Cluster N was described 
(Mouritsen et al. 2005; Heyers et al. 2007; Hein et al. 2010), 
using an antibody against the immediate early gene Egr-
1. The resulting expression pattern was mapped onto the 

expression patterns of selected members of the group of 
calcium binding proteins: calbindin (CB), calretinin (CR) 
and parvalbumin (PV), which have widely been used to char-
acterize neuronal subpopulations/neuronal subcircuits in all 
parts of the nervous system throughout the vertebrate animal 
kingdom (Celio et al. 1986; Braun et al. 1996; Roberts et al. 
2002; Guirado et al. 2003; Veney et al. 2003; Krützfeldt and 
Wild 2004, 2005; Wild et al. 2005; Suarez et al. 2005, 2006; 
Heyers et al. 2008; Logerot et al. 2011). These were com-
plemented by additional expression analyses of glutamate 
receptor type-1 (GluR1; Wada et al. 2004) due to published 
findings of a previously unknown, GluR1-positive nucleus 
within Cluster N, the dorsal nucleus of the hyperpallium 
(DNH; Mouritsen et al. 2005; Zapka et al. 2010). Based on 
the resulting neurochemical “profile” of each of the investi-
gated brain areas, we mapped the detailed neuronal connec-
tions within and between Cluster N and HF using neuronal 
tract tracing. We herein use the terminology introduced by 
Reiner et al. (2004). Based on genetic expression patterns, 
several studies have subsequently opted for a change of this 
nomenclature with respect to mesopallium and hyperpallium 
(Jarvis et al. 2013; Gedman et al. 2021). We go on using the 
terminology of Reiner et al. (2004) for reasons that will be 
outlined in the discussion.

Materials and methods

Animals and housing

Twelve Garden warblers (Sylvia borin) were obtained from 
bird stations in Helgoland (Germany), Rybachy (Russian 
federation) or were caught in the vicinity of the campus of 
Oldenburg University. Birds were housed in single wire 
cages (102 cm × 50 cm × 40 cm) under the natural circa-
dian and circannual light conditions of Oldenburg. Food 
and water were provided ad libitum. All animal procedures 
were approved by the Animal Care and Use Committees 
of the Niedersächsisches Landesamt für Verbraucherschutz 
und Lebensmittelsicherheit (LAVES, Oldenburg, Germany, 
Az.: 33.42502/27–01.05; 33.19–42,502-04–15/1865; 
33.19–42,502-04–20/3492) for the use of animals in 
research.

Neuronal tract tracing

Birds were either anaesthetized by intramuscular injection 
of Ketamine (10%, 0.1 ml/kg body weight; Pharmanovo, 
Hannover, Germany)/Medetomidine (Domitor©, 0.1%, 
0.1 ml/kg body weight; Orion Pharma, Espoo, Finland) or 
using Isoflurane CP© 1–1.5% (1 ml/ ml; cp-pharma, Burg-
dorf, Germany) administered through a beak mask and were 
head-fixed in a custom-built stereotactic unit. The surfaces 
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of both telencephalic hemispheres and the cerebellum were 
positioned in the same horizontal plane resulting in an angle 
of the plane between the tip of the beak and the ear bars 
of approximately 45º below the horizontal zero plane of 
the apparatus. The birds’ scalp was anaesthetized using a 
surface anaesthetic (Xylocain; Astra Zeneca, Wedel, Ger-
many), incised, and temporarily pulled aside. Replicable 
tracer injections were achieved by using coordinates of the 
target structures relative to the confluence of the superior 
sagittal and cerebellar “Y” blood sinus providing the zero 
coordinate. 30–100 nl of 1% cholera toxin B subunit (CtB; 
Sigma, Deissenhofen, Germany) dissolved in phosphate 
buffered saline (PBS) was stereotactically applied using a 
microinjector (WPI Nanoliter 2000 Injector, Sarasota, FL, 
USA) through a small hole in the skull above the targeted 
brain region.

After the surgery, all incisions were closed and resealed 
with surgical glue (Histoacryl®, BRAUN, Rubi, Spain). In 
case of intramuscular anaesthesia, the effect of Medetomi-
dine was antagonized using Atipamezole (Antisedan©, 0.5%, 
0.1 ml/kg; Orion Pharma, Espoo, Finland). Birds were given 
at least 96 h to recover from the surgery and to let the tracer 
transport. Post-surgical analgesia was provided through 
intramuscular administration of Metacam© (0.1 ml/kg body 
weight in 0.9% NaCl, Boehringer Ingelheim, Ingelheim, 
Germany) for 72 h.

Behaviourally driven neuronal activation

Single birds were placed into a custom-built, cylindrical 
plexi-glass cage fitted with a circular perch (Mouritsen et al. 
2004a, b, 2005; Heyers et al. 2010). To allow acclimatiza-
tion to the new surroundings, birds were placed in the cage 
at least 30 min before the experiment started. At dusk, room 
lights were turned down to a light intensity of ~ 2.5 mW/
m2, which equals strong moonlight and serves as a typically 
used value for countless behavioural orientation tests using 
night migrants (Wiltschko and Wiltschko 1972; Wiltschko 
et al. 1993; Mouritsen and Larsen 2001; Muheim et al. 2002; 
Mouritsen et al. 2005; Heyers et al. 2007, 2010; Liedvogel 
et al. 2007a; Hein et al. 2010, 2011; Zapka et al. 2009, 2010; 
Lefeldt et al. 2015; Elbers et al. 2017; Schwarze et al. 2016a, 
b; Kobylkov et al. 2019; Leberecht et al. 2022). Light was 
produced by incandescent light bulbs (wavelength spectrum 
given in Zapka et al. 2009). Each bird´s behaviour was con-
tinuously observed using infrared cameras (840 nm) con-
nected to a surveillance monitor. Since any excess motor 
activity, such as flying around/jumping on/off the perch, 
would have led to motor-dependent activation in the brain 
(Feenders et al. 2008), birds were only collected after they 
had been sitting still but constantly awake for at least 90 min 
in order to keep brain activity evoked through any sensory 
or motoric disturbances as low as possible.

Brain tissue processing

The birds were deeply anaesthetized with pentobarbital 
(Narcoren®, Boehringer Ingelheim, Ingelheim, Germany; 
2.5 ml/kg body weight) under dim light conditions (~ 2,.mW/
m2) and transcardially perfused with 0.9% saline containing 
0.1% heparin sodium salt followed by 4% paraformaldehyde 
(PFA) dissolved in PBS. Brains were dissected, postfixed in 
4% PFA overnight and cryoprotected in 30% D( +)-sucrose 
dissolved in PBS. Each brain was cut in six parallel series 
using a cryotome (Leica CM1860, Wetzlar, Germany) in 
sections of 40 µm thickness in either a frontal or sagittal 
plane. Until being subjected to immunohistochemical stain-
ing, sections were stored in PBS containing 0.1% sodium 
azide at 4 °C.

Antibody characterization

The following primary antibodies were used in this study.

Immunohistochemical stainings

Brain slices were stained free-floating using the immuno-
ABC-technique (Heyers et al. 2007, 2008, 2010. Lefeldt 
et al. 2014; Elbers et al. 2017; Kobylkov et al. 2020; Haase 
et al. 2022). Each incubation step was followed by rinsing 
brain sections three times in PBS for 5 min each. Endog-
enous peroxidases were saturated by incubation in 0.3% 
hydrogen peroxide dissolved in distilled water for 30 min. 
Unspecific binding sites were blocked by incubating the 
slices in 10% foetal calf serum (Kraeber, Ellerbek, Germany) 
dissolved in PBS containing 0.3% Triton-X 100 (PBS-T) 
for 60 min. Slices were incubated with one of the primary 
antibodies overnight (3 days in case of Egr-1; Table 1) at 4ºC 
with gentle agitation. Afterwards, slices were sequentially 
incubated for 60 min each with biotinylated secondary anti-
bodies and an avidin-coupled peroxidase-complex (Vector 
ABC Elite Kit, Vector Laboratories, Burlingame, CA, USA). 
Peroxidase-activity was detected using a 3′3-diaminobenzi-
dine (DAB; Sigma, Deissenhofen, Germany) reaction, modi-
fied by using b-d-glucose/glucose-oxidase (Sigma, Deissen-
hofen, Germany) instead of hydrogen peroxide (Shu et al. 
1988) to improve signal/background ratio. The substrate 
reaction was stopped in 0.1 M sodium-acetate. Slices were 
mounted on gelatinized glass slides, dehydrated in a graded 
series of ethanol (70%, 96%, isopropanol, xylene) and cov-
erslipped with Entellan (Merck, Darmstadt, Germany).



2735Brain Structure and Function (2022) 227:2731–2749	

1 3

Imaging and analysis

Slides were imaged with a light microscopic slide scanner 
(Zeiss Axio Scan.Z1, Oberkochen, Germany). Images used 
in this article were equally adjusted in contrast/brightness 
using ImageJ (NIH, Bethesda, MD, USA; Schindelin et al. 
2012). Schematic drawings, labelling and layout were made 
using a pen display (Wacom Intuos Pro, Krefeld, Germany) 
and Photoshop / Illustrator software (Adobe Systems, Moun-
tain View, CA, USA). Since no brain atlas for the Garden 
warbler is available to date, the neuroanatomical analyses 
were performed using the brain atlases of chicken (Kuenzel 
and Masson 1988; Puelles et al. 2007), pigeon (Karten and 
Hodos 1973), canary (Stokes et al. 1974) and zebra finch 
(Nixdorf-Bergweiler and Bischof 2007; Lovell et al. 2020).

Results

We assessed the general morphological and biochemical 
properties of the hyperpallium (containing Cluster N) and 
the HF using immunohistochemical staining against Egr-1, 
GluR1, CB, CR and PV on parallel slice series of Garden 
warbler forebrains. Patterns of immunohistochemical stain-
ing are displayed on representative brain slices at the level of 
Cluster N cut in a sagittal (Fig. 2) and frontal plane (Figs. 3, 
4). Each figure contains schematic inserts for anatomical 
orientation (Figs. 2a, 3a, 4a). Neuronal connectivity to/from 
Cluster N and HF was visualized using the neuronal tract 
tracer Cholera toxin B subunit injected into Cluster N and 
HF (Figs. 5, 6, 7).

Egr‑1

Low-light-induced neuronal activation of Cluster N, depicted 
by the expression of the immediate early gene Egr-1, was 
observed in a brain area spanning ~ 1 mm in the rostrocau-
dal, ~ 2 mm in the dorsoventral and ~ 2.5 mm in the mediolat-
eral axis. This area was located at the posterior pole of the 
hyperpallium and, in sagittal sections, was dorsally bordered 
by the HF (Fig. 2b). In the hyperpallium, Egr-1 expression 

covered all major hyperpallial compartments with highest 
densities in ventral HA (HAv) parts (formerly described as 
“DNH shell”; Mouritsen et al. 2005) and HD (Fig. 3b). HD 
displayed a gradient of Egr-1 positive neurons with declining 
numbers towards the mesopallial border. DNH, as previously 
shown (Mouritsen et al. 2005; Zapka et al. 2010; Elbers et al. 
2017), was found largely devoid of Egr-1 (Fig. 3b). In HF, 
high Egr-1 expression was observed in the hippocampal DLd 
and adjacent lateral DMv subdivisions, whereas the remain-
ing DLv, DMd and the V-shaped region of the HF exhibited 
little to no Egr-1 expression (Fig. 4b, g).

GluR1

Apart from few dispersed GluR1-positive neurons in HAd, 
the DNH represented the most prominent hyperpallial brain 
structure characterized by a dense, GluR1-positive fibre net-
work (Figs. 2c, g, 3c, g), while the surrounding HAv and 
HL were largely devoid of GluR1 Fig. 2c, g; Fig. 3c, g). 
HD was characterized by diffuse GluR1 expression, which 
extended into the underlying mesopallium (Fig. 2c; 3c). In 
HF, GluR1 prominently labelled DMd, while DMv, DLv 
and the V-shaped region were moderately labelled. DLd was 
entirely devoid of GluR1, thus setting a conspicuous bound-
ary between the hyperpallium and the medially adjacent HF 
(Fig. 4c, h).

Calbindin

The Garden Warbler hyperpallium displayed increased 
numbers of CB expressing neurons at caudal HAd and HAv 
levels surrounding DNH (Fig. 2d, h), while CB immunosig-
nal in HL and HD appeared low. DNH contained moderate 
numbers of CB positive cells (Figs. 2d, h, 3d, h). Sagittal 
sections revealed a slightly increasing CB expression gradi-
ent towards the frontal superior lamina (LFS), separating the 
hyperpallium from the underlying mesopallium (Fig. 2d). In 
HF, higher CB expression levels covered all major subcom-
partments with highest expression levels in DM, Vm and 
Vl, and thereby labelled a conspicuous boundary towards 
the only moderately labelled DL (Fig. 4d, i).

Table 1   Primary antibodies 
used in this study

Name Host Dilution
(Immuno-histo-
chemistry)

Company ID RRID

Calbindin (CB) Rabbit 1:1000 Swant CB38a AB_10000340
Calretinin (CR) Rabbit 1:1000 Swant 7699/4 AB_10000321
Cholera Toxin B subunit (CtB) Rabbit 1:1000 Sigma C3062 AB_258833
Early growth factor 1 (EGR1) Rabbit 1:1000 Santa Cruz sc-189 AB_2231020
Glutamate receptor 1 (GluR1) Rabbit 1:500 Chemicon AB1504 AB_90705
Parvalbumin (PV) Mouse 1:500 Sigma P3088 AB_22592925
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Calretinin

CR expression in sagittal sections of the Garden Warbler 
hyperpallium homogenously covered the entire HA from its 
rostral to caudal extent (Fig. 2e, i). CR positive cells were 
most abundant in medial HAv (Fig. 3e, i). In HL and DNH, 
CR displayed low to moderate expression levels (Figs. 2e, 
i, 3e, i). In HD, we observed a slightly increasing dorsal to 
ventral expression gradient, which peaked in LFS (Figs. 2e, 
3e). In HF, CR expression was less distinct but appeared to 
label its subdivisional borders (Fig. 4e).

Parvalbumin

In sagittal sections, PV displayed a uniformly high expres-
sion pattern in superficial layers of the rostral hyperpal-
lium (Fig. 2f, j), thereby showing an almost complemen-
tary expression pattern as compared to CB (Fig. 2d, h). 
In HD, PV followed a gradually decreasing expression 
level towards LFS (Figs. 2f, 3f). Around DNH, increased 
numbers of parvalbumin expressing neurons were found 
in HAv (Fig. 2f, j), thereby displaying a striking contrast 
to the DNH, which contained many PV-positive multipo-
lar neurons with large dendritic fields (Figs. 2f, j, 3f, j). 
HAd was almost devoid of PV positive cells and only con-
tained diffusely stained PV-positive fibres (Figs. 2j, 3j). In 

Fig. 2   Anatomy and biochemistry of the Garden Warbler Wulst, sag-
ittal view. a Schematic drawing including subdivisional boundaries 
for anatomical orientation. Insert shows the location of magnified 
details displayed in g, h, i and j. Parallel sagittal sections at the level 
of DNH (L ~ 2.5) immunohistochemically processed against Egr-1 
(b), GluR1 (c), Calbindin (CB; d), Calretinin (CR; e) and Parvalbu-

min (PV; f). Note the magnetoreception-triggered dim-light activa-
tion, as depicted by Egr-1-expressing nuclei b. Scale bar = 200  µm 
in (a), for (a)-(f). Magnified details of the respective marker stain-
ing: (g), GluR1, (h), CB, (i), CR, (j), PV. Scale bar in (g) (for (g)-
(j)) = 50 µm. For abbreviations, see list
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HF, strongest PV-immunoreactivity was observed in DMd 
and DLd, whereas the remaining DMv, DLv and V-shaped 
region only contained large, more dispersed occurring PV-
expressing neurons.

Neuronal tract tracing

Neuronal connectivity to/from Cluster N were visualized 
using focal injections of cholera toxin B subunit into Cluster 
N (n = 4; coordinates: A 5.0 mm; L3.0 mm; depths 0.5 mm; 
Fig. 5a, 6a) and HF (n = 4; coordinates: A 4.7 mm; L1.5 mm; 
depths 0.5 mm; Fig. 5b, 7a). In the following, we primarily 

focused on the connectivity within and between the hyper-
pallium, HF and the dorsolateral corticoid area (CDL).

To label as many Cluster N connections as possible, 
we administered considerably large volumes of neuronal 
tracer to intermediate aspects of the caudal Garden War-
bler hyperpallium. We confirmed the correct tracer place-
ment into the thalamorecipient layers of Cluster N by 
observing retrogradely labelled neurons in ventral parts 
of the thalamic GLd, which largely mirrored previously 
published data (Figs. 5a, 6f; Heyers et al. 2007). Within 
the hyperpallium, we observed a prominent band of retro-
gradely labelled neurons, which covered HD almost in its 

Fig. 3   Anatomy and biochemistry of the Garden Warbler Wulst, fron-
tal view. a Schematic drawing including subdivisional boundaries for 
anatomical orientation. Insert shows the location of magnified details 
displayed in g, h, i and j. Parallel frontal sections at the level of Clus-
ter N immunohistochemically processed against Egr-1 (b), GluR1 (c), 
Calbindin (CB; d), Calretinin (CR; e) and Parvalbumin (PV; f). Note 

the magnetoreception-triggered dim-light activation, as depicted by 
Egr-1-expressing nuclei b. Scale bar = 400 µm in (a), for (a)-(f). Mag-
nified details of the respective marker staining: (g), GluR1, (h), CB, 
(i), CR, (j), PV. Scale bar in (g) (for (g)-(j) = 150 µm. For abbrevia-
tions, see list
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entirety (Figs. 5a, 6a, d). Retrogradely labelled neurons 
were further observed within HL and the DNH (Figs. 5a, 
6a). Anterogradely traced fibres stretched throughout HD 
with highest fibre densities in medial parts (Figs. 5a, 6d). 
In addition, the tracer labelled a thin band of anterogradely 

labelled fibres ventrally adjacent to HA, potentially repre-
senting HI (Figs. 5a, 6a, c).

Within HF, we observed a dense network of anterogradely 
labelled terminals in DL and DMv. Fewer retrogradely 
labelled neurons were observed in the DMv and DLv 

Fig. 4   Anatomy and biochemistry of the Garden Warbler hippocam-
pal formation, frontal view. (a) Schematic drawing including subdi-
visional boundaries for anatomical orientation. Insert shows the loca-
tion of magnified details displayed in g, h, i and j. Parallel frontal 
sections at the level of Cluster N immunohistochemically processed 
against Egr-1 (b), GluR1 (c), Calbindin (CB; d), Calretinin (CR; e) 

and Parvalbumin (PV; f). Note the magnetoreception-triggered dim-
light activation, as depicted by Egr-1-expressing nuclei b. Scale 
bar = 200  µm in (a), for (a)-(f). Magnified details of the respective 
marker staining: (g), Egr-1, (h), GluR1, (i), CB, (j), PV. Scale bar in 
(g) (for (g)-(j)) = 50 µm. For abbreviations, see list
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subdivisions (Figs. 5a, 6a, e). The remaining HF subcom-
partments were largely devoid of any projections (Figs. 5a, 
6a). A conspicuous bundle of thick fibres passed through DL 
to form the septopallio-mesencephalic tract (TSM). TSM 
took its course along the median sagittal edge of the hemi-
sphere, dived caudoventrally to terminate in the thalamic 
GLd roof (Figs. 5a, 6a, f).

Outside HF and Cluster N, at more caudal levels, we 
observed a prominent anterograde projection to CDL 
approximately located at the lateral edge of the ventricle. 
A thin band of retrogradely labelled fibres were located in 
ventral CDL parts adjacent to the ventricle (Figs. 5a, 6b).

To confirm these results, we placed a tracer injection in 
DM/DL within HF, which had received anterograde projec-
tions from Cluster N. Prominent intrahippocampal antero-
grade projections covered all subdivisions of the V-shaped 
region, but most of them terminated in Tr (Figs. 5b, 7a, e). 

In addition, anterograde tracing was also observed in more 
caudal DLv parts.

Projections to and from the hyperpallium labelled by HF 
tracings were as follows: like in the hyperpallial tracings, we 
observed a prominent band of retrogradely labelled neurons 
in HD with the majority restricted to medial parts (Figs. 5b, 
7a, c, d). Furthermore, retrogradely labelled neurons were 
found in medial HI and HA (Figs. 5b, 7a, c). In HA, the 
labelled neurons were located further rostrally within super-
ficial HAd layers and, more sparsely distributed, in medial 
parts adjacent to DL. Prominently large retrogradely labelled 
multipolar neurons were located in DNH. Anterograde 
tracing was mainly observed within ventral aspects of HD 
(Figs. 5b, 7a).

Outside the HF and Cluster N, HF tracings revealed a 
strongly labelled patch of retrogradely labelled neurons in 
superficial CDL parts and a dense anterogradely labelled 
patch of fibres ventrally attached, thereby showing almost 

Fig. 5   Schematic illustration 
of the rostrocaudal extent of 
labelling following tracer injec-
tions into Cluster N a and HF 
b. Location of core injection 
is marked in dark grey, while 
the grey area around the core 
indicates tracer spread. For 
illustration purposes, retro-
gradely labelled neurons are 
represented by black dots, while 
the locations of anterogradely 
labelled fibres and terminals are 
marked in red. Neither the dots 
nor the red signal represent real 
numbers. Scale bar = 1 mm. For 
abbreviations, see list
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opposite connectivity as compared to Cluster N tracings 
(Figs. 5, 6b, 7b). At thalamic levels, we observed antero-
gradely labelled TSM fibre terminals within the GLd roof 
(Figs. 5b, 7f).

Discussion

General morphological/biochemical observations

Using immunohistochemical staining against GluR1, CB, 
CR and PV, we show that the subdivisions of the Garden 
Warbler hyperpallium match well with the subdivisional 
schemes known from other birds (Reiner et al. 2004; Jarvis 
et al. 2005). Each of them displays a unique biochemical 

profile: HA is subdivided into an anterior, strongly PV-posi-
tive, and a posterior, strongly CB-positive part, which forms 
a shell-like structure surrounding DNH, and whose expres-
sion extends into the caudally attached HF (Figs. 2d, f; 3d, 
f; 4d, f). CR expression homogenously covers the entire HA 
(but not DNH) and thus differs from all other proteins ana-
lyzed (Figs. 2e, 3e). DNH spans along intermediate depths 
within HA, shows immunoreactivity against ionotropic 
GluR1 receptor (Fig. 3c) and PV (Fig. 3f), and, addition-
ally, is clearly distinguishable from the surrounding HA with 
all other CaBPs analyzed (Fig. 3). Finally, HD is charac-
terized by PV expression (Figs. 2f, 3f), which displays a 
gradually decreasing gradient towards LFS, and CB (Fig. 3d) 
and CR (Fig. 3e), both of display an almost complementary 

Fig. 6   Connectivity of the Garden Warbler Wulst, frontal view. 
(a) Neuronal tract tracing pattern within the Wulst after injec-
tion of Cholera toxin B subunit into the centre of Cluster N. Inserts 
show the location of magnified details displayed in c, d and e. Scale 
bar = 500  µm. (b) Resulting tracing patten in the dorsolateral corti-
coid area (CDL) approximately 500 µm posterior to the injection site. 
Note the dense pattern of anterogradely labelled fibre terminals in 
dorsal and retrogradely labelled somata in ventral CDL parts. Scale 
bar = 25 µm. (c) Anterogradely labelled fibre terminals in medial HI 

parts. Scale bar = 50 µm. (d) HD receives both anterograde and ret-
rograde input after tracer injection into Cluster N. Scale bar = 25 µm. 
(e) Anterogradely labelled fibre terminals at the hippocampal DM/DL 
transition zone. Retrogradely labelled neurons are found in DLv and 
DMv compartments. Scale bar = 100  µm. (f) Retrogradely labelled 
neurons in lateral and ventral compartments of the ipsilateral GLd 
after tracer injection into Cluster N. Scale bar = 100 µm. For abbre-
viations, see list
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expression pattern as compared to PV (Fig. 3f), i.e. with 
strongest expression levels in LFS.

Likewise, our immunostainings compartmentalize the 
Garden Warbler HF into its structural subdivisions known 
from pigeons (Herold et al. 2014): a DL portion, which is 
subdivided into a PV-positive DLd (Fig. 4f) and GluR1-
positive DLv (Fig. 4c); DM displays strong PV (Fig. 4f) and 
GluR1 (Fig. 4c) expression in DMd, while DMv is charac-
terized by CB (Fig. 4d) and a moderately strong expression 
of GluR1 (Fig. 4c). Most prominent expression feature of the 
V-shaped region are strongly CB (Fig. 4d) and CR-positive 
(Fig. 4e) fibres in Vl and Vm laterally flanking Tr.

Hippocampal formation

The role of the avian HF in the context of navigation and 
spatial memory has long been studied (Herold et al. 2015; 
Mouritsen et al. 2016). In stark contrast, information is 
sparse when it comes to correlate hippocampal functions 
to specific subdivisions and even less when it comes to the 
role of the HF in using, modulating or integrating magnetic 
information. Here, only a few studies reported magnetic 
field-responsive neurons (Vargas et al. 2006; Wu and Dick-
mann 2011, 2012; Keary and Bischof 2012). How is this 
evidence connected to migratory behaviour and navigation 

Fig. 7   Connectivity of the Garden Warbler hippocampal formation, 
frontal view. a Neuronal tract tracing pattern within the Wulst after 
injection of Cholera toxin B subunit into DM/DL. Inserts show loca-
tion of magnified details displayed in c, d and e. Scale bar = 500 µm. 
b Resulting tracing patten in the dorsolateral corticoid area approxi-
mately 500 µm posterior to the injection site. Note the dense pattern 
of anterogradely labelled fibre terminals in dorsal and retrogradely 
labelled somata in ventral CDL parts. Scale bar = 25 µm. (c) Dense 

retrograde labelling of neurons in medial Cluster N parts HA, HI and 
HD after hippocampal tracer injections. Scale bar = 50 µm. d Strong 
retrograde tracer transport from the hippocampal formation to HD. 
Scale bar = 30  µm. e Tracer injections into DM/DL reveal dense 
anterograde innervation in the triangular hippocampal subdivision 
(Tr). Scale bar = 100  µm. f Anterogradely labelled fibres within the 
septomesencephalic tract (TSM) of the ipsilateral thalamic GLd roof. 
Scale bar = 100 µm. For abbreviations, see list
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and what are the neuronal correlates? Indeed, 20 years after 
the first reports of spatially active and location-sensitive neu-
rons in the HF of pigeons (Siegel et al. 2002, 2005; Hough 
and Bingman 2004), studies reported place cells organized 
along the anterior–posterior axis of the HF in tufted titmice 
(food-hoarding songbird) and zebra finches (non-food hoard-
ing songbird), as well as head direction cells in the HF of 
Japanese quails (Payne et al. 2021; Ben-Yishay et al. 2021). 
Furthermore, it was reported that hippocampal lesions dis-
rupt the capacity of discriminating magnetic intensity but 
not inclination in pigeons, while hyperpallial lesions had 
the opposite effect, suggesting a double-dissociation of the 
HF and the hyperpallium (Bingman et al. 2021). However, 
no details of subdivisional restrictions in the last three men-
tioned studies were provided, although a common subdivi-
sional scheme based on different morphology, neurogenic 
and neurochemical markers and connectivity patterns exists 
(Atoji and Wild 2006; Herold et al. 2014, 2019; Striedter 
2016). This subdivisional scheme, as shown in the data pre-
sented here, also applies for the Garden warbler. Thereby, 
the observed differential distribution patterns of CaBPs (PV, 
CR, CB) and GluR1 allowed us to create a precise subdivi-
sional scheme for the HF and additionally to separate the HF 
from the adjacent CDL and HA. The different expression 
patterns of CaBPs further suggest functional specializations 
of the subdivisions as to the known different contribution 
to neuronal excitability of selective CaBPs (Markram et al. 
2004). In addition, our data show that during night-migra-
tory behaviour, neurons in DLd and DMv of the Garden 
warbler, were highly activated, while all other subdivisions 
showed little to no Egr-1 activation. This shows for the first 
time that the HF is actively involved during night-migra-
tory behaviour and will be discussed in more detail below 
together with the observed connectivity loop between the 
HF, HD and CDL and a possible involvement in the trans-
mission and integration of magnetic information.

Cluster N

High neuronal activation in the visual forebrain region Clus-
ter N of migratory birds has been associated with processing 
of compass information during magnetic orientation (Mour-
itsen et al. 2005, Heyers et al. 2007; Liedvogel et al. 2007a; 
Hein et al. 2010; Zapka et al. 2009, 2010; Mouritsen et al. 
2016; Elbers et al. 2017; Fig. 1). Night-migratory songbirds 
with lesioned Cluster N were unable to use their magnetic 
compass, whereas they could use their star and sun com-
passes (Zapka et al. 2009). Mouritsen et al. (2005) originally 
assigned the borders of Cluster N to all major hyperpallial 
layers and the ventrally adjacent dorsal mesopallium (MD). 
According to Jarvis et al. (2013), HD as the ventral most 
hyperpallial subdivision is of mesopallial origin based on 
the distribution of histogenetic markers. This anatomical 

designation of Jarvis et al. (2013) contradicts the existing 
anatomical nomenclature (Reiner et al. 2004; Shimizu et al. 
1995) and recent tracing studies (Stacho et al. 2020). These 
demonstrated a dense and column-like interconnectivity 
between all four hyperpallial areas incl. HD while connec-
tions to MD were sparser. We, therefore, used in our study 
the official terminology, which is further supported by ear-
lier neuronal tract tracing data, where the lateral portion of 
HD (MD sensu Jarvis et al. 2013) but not MD has been 
shown to receive visual input from the dorsal lateral tha-
lamic geniculate complex (Karten et al. 1973).

Having the here presented morphological markers avail-
able, Cluster N can be assigned to the posterior parts of 
all major hyperpallial compartments (Fig. 2). In addition, 
we observed activated neurons in the medially adjacent hip-
pocampal DLd and a thin band within DMv at the DM/DL 
border (Fig. 4b).

Although, admittedly, none of the analyzed markers 
selectively labelled Cluster N as a whole, the combinato-
rial expression patterns of the analyzed proteins mark the 
approximate borders of Cluster N (except for its rostral 
boundary towards the somatosensory Wulst part; Wild 1987, 
1997) and thus allow us to place it into the known avian fore-
brain network. Moreover, our marker analyses further subdi-
vide the Garden Warbler Wulst into biochemically distinct 
compartments, some of which could potentially be dedicated 
to a specific functional subsystem within the thalamofugal 
visual system.

Wulst connectivities

In vivo neuronal tract tracings intrinsically bear two prob-
lems: (1) the accidental co-labelling of passaging fibres, par-
ticularly when mapping layered structures such as the bird 
forebrain; (2) depending on the size of the area of interest, 
precise injections are difficult to confine to the respective 
target. Brain slice cultures can at least partially circum-
vent those problems because target areas can be visually 
approached without having to penetrate neighbouring struc-
tures. In turn, any connectivity far away from the injection 
site will be cut off, while in vivo tracings potentially reveal 
labelled fibres and somata all over the brain.

We vindicated the use of in vivo tracing and used con-
siderable amounts of neuronal tracer in our injections for 
two reasons: (1) Cluster N was previously considered as a 
functional entity and we wanted to label as many as possible 
potential connections; (2) the estimated number of experi-
mental animals needed to perform precise focal tracings on 
a subdivisional level in the brain of a non-breedable, wild-
caught, night-migratory songbird species, such as the Gar-
den Warbler, would by far have exceeded both our legal and 
ethical limits. In order to nevertheless critically assess our 
own data, in the following, we took greatest care to evaluate 



2743Brain Structure and Function (2022) 227:2731–2749	

1 3

the shown connectivity patterns by superimposing them onto 
the Wulst connectivity known from other bird species (e.g. 
Shanahan et al. 2013).

The hyperpallium in birds is a four-layered structure, 
consisting of HA, IHA, HI and HD. Its role as the main ter-
mination area for visual information from the thalamic GLd 
(Güntürkün, 1993, 2000) was first shown in a fibre degenera-
tion study in pigeons, which showed that visual information 
is primarily projected onto IHA with weaker terminations in 
HD (Karten et al. 1973; Wild 1997). Later, retrograde trac-
ings from the visual Wulst including HA confirmed the GLd 
as afferent thalamic source (Bagnoli and Burkhalter 1983; 
Miceli and Repérant 1985; Deng and Rogers 1998; Miceli 
et al. 1990; Güntürkün and Karten 1991; Ströckens et al. 
2013). More recently, Atoji et al. (2018) showed additional 
thalamic projections to HI and HD in pigeons. Thus, GLd 
appears to originate visual information to all major layers of 
the hyperpallium to different extents. Our Cluster N tracings 
retrogradely labelled GLd neurons (Fig. 4f), which proves 
that thalamorecipient hyperpallial layers (i.e. HA, IHA, HI 
and/ or HD) have been successfully targeted.

Within the Wulst, IHA projects to HA and IH (Wild 
1987; Kröner and Güntürkün, 1999; Shimizu et al. 1995; 
Stacho et al. 2020). As shown by Stacho et al (2020) HI and 
HA project to HD in pigeons. Furthermore, Nakamori et al. 
(2010) found a pathway involving three relays within HD.

Due to the coarseness of our very limited number of 
injections, not all of the above mentioned intrahyperpallial 
connectivity could be clearly revealed in our study. However, 
our Cluster N tracings confirmed massive reciprocal tracer 
transport to and from HD, and, to a lesser degree, HI, which 

indicates that our injection site included HA (Figs. 5a, 6a, 
c, d; 8; Shimizu et al. 1995; Kröner and Güntürkün, 1999).

Regarding hyperpallial-hippocampal connectivity, HA 
and HD in pigeons were shown to have reciprocal connec-
tions with DM (Casini et al. 1986; Kröner and Güntürkün, 
1999; Atoji and Wild 2004)–an anatomical finding that was 
also substantiated by a resting-state connectivity analysis 
(Behroozi et al. 2017). In the Garden Warbler, we observed 
anterograde projections from Cluster N to DM and DL 
(Figs. 5a, 6a, e, 8), confirmed by retrograde tracings from 
HF, which retrogradely labelled many neurons in HD and, 
to a lesser degree, in HA (Figs. 5b; 7a; 8). In addition, HD 
in pigeons was previously shown to send direct efferents to 
the hippocampal DL (Atoji et al. 2018). HF tracings in the 
Garden Warbler revealed strong retrograde connections to 
HD (Figs. 5b, 7a, c, d, 8), which suggests that our tracer 
injections in HF included DL. Thereby, our data corroborate 
previous findings of a direct connection between HA/HD 
and DM and between HD and DL.

In pigeons, it was shown that HD, in addition to a direct 
projection to DL, sends afferents to CDL, which, in turn, 
sends afferents to DM. HD was thus considered to serve 
as a potential double entry port to HF (Atoji et al. 2005). 
Our tracings revealed a strong anterograde projection from 
Cluster N towards the CDL in the Garden Warbler and a cor-
responding retrograde projection from HF (Figs. 5; 6b, 7b, 
8). This confirms both that the tracer was placed into HD, 
and the existence of a very similar connection in the Garden 
Warbler forebrain originating from HD to both DL and CDL.

Last, tracer injections into both Cluster N and HF retro-
gradely labelled the vast majority of neurons within DNH 

Fig. 8   The proposed neural connectivity between Cluster N and the 
hippocampal formation in the Garden warbler. (a) Proposed connec-
tions based on the tracing results shown in Figs.  4 and 5. Boldness 
of arrows indicates strength of connections between the brain sub-
structures. Note HD as the main origin of fibres reaching HF either 
directly or indirectly via CDL. (b) Global view of the proposed 

neural pathway underlying magnetic compass information process-
ing (drawn unilaterally only for illustration purposes). Areas inside 
the dotted line display night vision-triggered activation (i.e. Clus-
ter N and parts of the medially attached hippocampal formation). 
Blue = visual Wulst; Red = hippocampal formation; Green = CDL. For 
abbreviations, see list
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(Figs. 5, 6a, 7a). Those injections will unequivocally have 
led to labelling of TSM, which originates in HA and runs 
along the hippocampal surface medially to dive ventrally 
along the median sagittal plane (Figs. 5, 6a, 7a). This indi-
cates that DNH is connected to TSM and thus represents a 
previously undescribed HA subdivision.

Taking all shown connectivity together, our neuronal tract 
tracings in Cluster N included HA, HD and, consequently, 
all layers in between (i.e. IHA and HI), while HF tracings 
included DM and DL. Based on these findings, with few, 
probably species-specific differences, our data largely cor-
roborate the known connectivity described in other bird 
species. We thereby show that HF and the hyperpallium in 
the night-migratory Garden Warbler are functionally con-
nected and that the vast majority of hyperpallial connections 
towards HF originates from HD (Fig. 8a).

As shortly mentioned in the introduction, we used the 
new avian brain nomenclature proposed by Reiner et al. 
(2004). Subsequently, several studies that analyzed the tran-
scriptomes of large numbers of zebra finch genes (Chen et al. 
2013; Jarvis et al. 2013; Gedman et al. 2021) detected a high 
level of similarity between HD, HI and MD and proposed a 
further nomenclature change that reduced the hyperpallial 
entities to two (HA and IHA) and concomitantly enlarged 
the mesopallial territory by incorporating HD and HI into 
MD. This was accompanied by the view of the continuum 
hypothesis which posits that avian dorsal and ventral pal-
lium wrap around the vestigial lateral ventricle. While we 
highly value the continuum hypothesis as a useful hypoth-
esis to understand the arrangement of the avian pallium, we 
see important differences between the connectivity patterns 
and neurochemical profiles of HD, HI, and MD that speak 
against a fusion of these areas (Shimizu and Karten 1990; 
Atoji and Wild 2005, 2012, 2019; Atoji et al. 2018; Kröner 
and Güntürkün, 1999; Stacho et al. 2020). Based on these 
findings we outlined our results using the original nomen-
clature introduced by Reiner et al. (2004).

A potential pathway for the integration 
of navigational information

Various studies have suggested a potential involvement of 
HD in processing navigation-related information: Cluster N 
activation, which includes HD, has been shown in Garden 
Warblers (Sylvia borin; Mouritsen et al. 2005; Heyers et al. 
2007; Hein et al. 2010; this study), European Robins (Eritha-
cus rubecula; Liedvogel et al. 2007a; Zapka et al. 2009), 
Meadow Pipits (Anthus pratensis; Zapka et al. 2010), Sar-
dinian Warblers (Curruca melanocephala; Liedvogel et al. 
2007a) and Northern Wheatears (Oenanthe oenanthe; Elbers 
et al. 2017). This was independently replicated in night-
migratory Brownheaded Buntings (Emberiza bruniceps) 
which display high levels of neuronal activation-triggered 

immediate early genes, in a Cluster N-like visual forebrain 
structure including HD only at night in their migratory phase 
(Rastogi et al. 2011).

HD in the thalamofugal pathway, as shown in previous 
studies (Casini et al. 1986; Kröner and Güntürkün, 1999; 
Atoji and Wild 2004, 2005; Atoji et al. 2018) seems to 
originate a major output network to HF either directly to 
DL, or indirectly via CDL to DM. DM, DL and CDL have 
been considered the functional backbone of the hippocam-
pal formation in pigeons based on their high synchroniza-
tion in a study on functional connectivity patterns using 
blood oxygen level dependent (BOLD) fluctuation analyses 
(Behroozi et al. 2017). This functional “clustering” could 
actually be explained by our connectivity results: (1) DM, 
DL and CDL of Garden Warblers receive their main input 
from the same source, i.e. HD (Fig. 8a), (2) HD, DM and DL 
are functionally connected either directly or indirectly via 
CDL (Figs. 5, 6b, 7b, 8a) and (3) are jointly activated under 
low light (Figs. 2b, 3b, 4b, g).

Our data indicate that HD represents the main connect-
ing structure between the hyperpallium and the hippocam-
pal DM/DL. Could DM/DL be of central importance in 
processing navigational information? Indeed, lesion stud-
ies indicate that the type of information from the visual 
pathways reaching the HF is almost certainly not purely 
visual, since birds with lesioned HF were not impaired 
on a variety of visual tasks such as delayed matching-to 
sample, concurrent discrimination or retention of a visual 
discrimination but rather on spatial tasks (for review, see 
Colombo and Broadbent 2000). Moreover, a recent study 
in quails (Coturnix coturnix) found direction-sensitive 
neurons in DM/DL (Ben Yishay et al. 2021). Place cells 
have been described in the HF of tufted titmice (Parus 
bicolor; Sherry and Hoshooley 2007; Payne et al. 2021). 
Recent studies in pigeons showed that HF lesions resulted 
in a complete loss of intensity discrimination while spar-
ing inclination discrimination. In contrast, Wulst lesions 
had the opposite effect, resulting in a complete loss of 
inclination discrimination while sparing intensity discrim-
ination (Bingman et al. 2021). This is in agreement with 
the lesion study of Zapka et al. (2009) showing that the 
inclination compass but not the magnetic map of a night-
migratory songbird is disrupted by Cluster N lesions. Mag-
netic intensity is thought to be involved in the magnetic 
map of night-migratory songbirds and requires input from 
the trigeminal system (Heyers et al. 2010; Kishkinev et al. 
2013, 2015; Lefeldt et al. 2014; Elbers et al. 2017; Pakho-
mov et al. 2018; Kobylkov et al. 2020). Any connections 
between the trigeminal system and hippocampus, however, 
are unknown to date.

In addition to magnetic compass information, a very 
similar role might apply to olfactory navigational infor-
mation, which is known to be used by navigating pigeons 
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(Gagliardo 2013). The olfactory system connects with 
HD through reciprocal connections between the olfactory 
bulbs and the prepiriform and piriform cortices (Bingman 
et al. 1994; Patzke et al. 2011; Atoji et al. 2014). Homing 
from familiar or unfamiliar sites increased Egr-1 immu-
noreactivity in HF, particularly in DM and DL (Shimizu 
et al. 2004; Patzke et al. 2010).

To sum up, several pieces of evidence indicate that HD 
could serve as a gateway to HF for navigational (visual, 
olfactory and magnetic) information in birds. In Garden 
Warblers, HD appears to represent a central relay, with 
which magnetic information from the hyperpallium could 
be transmitted to HF. Within HF, our findings specify DM/
DL as a potential hippocampal target, in which visually 
perceived magnetic compass information could be inte-
grated with other navigational cues in these night-migra-
tory songbirds (Fig. 8b).
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