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a b s t r a c t

Several studies have shown that the level of dopaminergic transmission and D1 receptor signaling is crucial
for working memory (WM) in the prefrontal cortex (PFC) of mammals. Thus, hyper- or hypostimulation
of prefrontal D1 receptors are pathophysiological findings often involved in cognitive and WM impair-
ments. These observations can be mimicked by supranormal stimulation or inhibition with D1 receptor
agonists or D1 antagonists, respectively. As a consequence, it is assumed that there is a normal range
of dopamine function in prefrontal cortex that can be described as an inverted U-shaped relationship
between dopamine transmission, i.e. D1 receptor stimulation, and intact WM. If this is true, short-term
fluctuations of cognitive performance might be described as small-scale adjustments along the tip of the
inverted U-curve and should depend on D1 receptor stimulation. We tested this hypothesis in pigeons
performing a delayed-matching-to-sample task (DMTS), a classic paradigm to test WM. We applied the
D1 agonist SKF81297 and the D1 antagonist SCH23390 into the nidopallium caudolaterale (NCL), the avian
functional analogue of the PFC, and simultaneously in the medial striatum (MSt), by in vivo microdialysis
while the animals performed the task. Animals showed daily fluctuations in WM performance. While
the D1 agonist was able to improve or to decrease performance during low or strong performance peri-
ods, respectively, performance did not differ from control with the D1 antagonist. This study shows that
D1 receptors seem to calibrate differentially prefronto-striatal functions based on individual low or high
performance states.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Working memory (WM), which is the ability to hold and manip-
ulate information online, is related to prefrontal and dopaminergic
processes. Accordingly, a strong dopaminergic innervation and a
high density of dopamine (DA) D1 receptors in the prefrontal cor-
tex (PFC) [52] are crucial. The amount of released DA is positively
correlated with WM performance [64]. Prefrontal DA depletion or
D1-blockade in the PFC results in severe WM deficits [8,68,71,76].
Memory cells within the PFC show elevated firing patterns during
delay periods of WM tasks [25] and D1 receptor agonists increase
their activity during the delay [72]. Computational models suggest
that DA stabilizes neural representations during WM [21,22].

The PFC is tightly connected to striatal subfields, forming
prefronto-striatal loops [2]. Consequently, the striatum participates
in WM performance [33,37,77] and striatal neurons respond during
delays in a delayed-matching-to-sample (DMTS) task [40]. Since the
striatum is a major target of DA and striatal neurons are strongly
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modulated by DA [62], the connections between the striatum and
the PFC give an additional route for DA to influence WM.

D1 receptor functions probably modulate WM along an inverted
U-shaped curve [4,10,85,89]. An optimal DA level is necessary for
proper WM performance, with either hypo- or hyperdopaminergic
states leading to WM impairments. Thus, prefrontal application of a
low dose of a DA agonist improves WM in monkeys [86], especially
in aged animals with impaired performance [9,11], while higher
doses impair spatial WM in rats [89]. Also, prefrontal D1 agonists
improve WM in low performing but not high performing rats [32].
In humans, oral administration of dextroamphetamine impairs WM
in high performers and improves WM of low performing individuals
[55].

To further investigate the role of D1 receptor signaling on indi-
vidual WM fluctuations and within the pigeons prefronto-striatal
system, we applied the D1 agonist SKF81297 and the D1 antagonist
SCH23390 via reverse in vivo microdialysis into the nidopallium
caudolaterale (NCL) and the medial striatum (MSt) while pigeons
performed a DMTS-task. The NCL is considered the avian analogue
of the PFC based on structural and functional levels, while the avian
and mammalian MSt are homologues structures [39,66]. According
to the inverse U-shaped curve of D1 receptor functions on WM, a D1
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agonist should improve WM during states of low performance and
should impair WM during states of high performance, with the D1
receptor antagonist having opposite effects. It is important to know
that earlier investigations observed this pattern by different types
of subjects [32] or by varying a well-trained task condition in the
same individuals [23], while present findings extend this showing
that the D1 agonist modulates WM in opposite directions depend-
ing on different performance levels within the same individual and
within the same task.

2. Material and methods

2.1. Subjects

Ten experimentally naive, adult, unsexed pigeons (Columba livia) of local
stock were used in the experiments. They were housed in individual cages in a
temperature-controlled room on a 12-h light–dark cycle. One week before training,
they were food-deprived to 80% of their normal free feeding weights. They always
had ad libitum access to water and grit. All pigeons were trained and tested 4 or
5 days a week in an operant chamber. The animal procedures were conducted in
accordance with the NIH Guide for the Care and Use of Laboratory Animals and under
adherence of the German laws to protect animals.

2.2. Apparatus and stimuli

Two identical operant chambers (34 cm × 33 cm × 36 cm) were used in the pre-
training and DMTS-task. Each chamber was controlled via a digital input–output-
board (CIO-PDISO8; Computer Boards, Inc.) and illuminated by a 24 W, centrally
fixed light bulb. Three opaque operant keys (2 cm in diameter) with a distance of
10 cm between them were located at the back panel of each box, 22 cm above the
floor. The pecking keys were homogeneously transilluminated either by white, red
or green light, without matching the brightness of the colors. White lights were
used in the operant conditioning and pretraining sessions, while red and green lights
were used during the training and the DMTS-task. The feeder, combined with a light
emitting diode, was fixed in the center of the back panel, 5 cm above the floor.

2.3. Behavioral procedures

2.3.1. Pretraining
During the first sessions, pigeons were trained to peck reliably on the center

key, whenever it was illuminated with white light. After a single peck, the light was
turned off, and the pigeons were reinforced with 3 s access to food, followed by an
inter-trial interval for 5 s. In the next steps, each trial began with the illumination of
the center key. One peck on the lateral keys during this phase terminated the trial
which was then followed by an inter-trial interval of 15 s and a retry of the trial.
Pecking on the central key led to the extinction of the central light and, immediately
thereafter, to the illumination of one of the lateral choice keys. After pecking the
illuminated lateral key, pigeons were reinforced, whereas pecking the dark choice
key caused punishment by a 10 s time-out period during which all lights were turned
off. One session included 80 trials with a 15 s inter-trial interval between each trial.
Throughout the next training sessions, the number of pecks required on the center
key to extinguish the center light and to turn on the lateral lights was constantly
increased from 1, 3, 6 to 15 pecks. The criterion for the pretraining was 100% correct
responses in one session.

2.3.2. Training with colored operant keys
In this phase, the operant keys were illuminated either by red or green light

instead of white light. The illumination of the central stimulus with either red or
green light started the trial. The center light stayed on until the pigeon had pecked
the key 15 times before it was turned off. Immediately thereafter, one of the lateral
keys, randomly the right or left one, was illuminated in the same color as the central
key. Pigeons were reinforced after pecking the illuminated key with 3 s access to
food and punished after pecking the dark key by a 10 s time-out. Training went on
until the pigeons reached a performance level of 100% correct responses and were
able to finish 80 trials within 20 min on three subsequent days.

2.3.3. DMTS-task
To introduce WM with a short-term memory component, we used a DMTS-task

as described in earlier investigations [17]. Each trial began with the illumination
of the central key, the sample stimulus, either in red or green. During this time,
pecking on the lateral unlighted keys terminated the trial and an inter-trial interval
was initiated followed by a repetition of the trial. Otherwise the sample stimulus
remained active until the pigeon had pecked the sample stimulus 15 times. After that
the delay period started during which the sample stimulus was no longer visible. At
the end of the delay, the two lateral choice keys were illuminated simultaneously,
one in red and the other in green light. Matching the sample stimulus by choosing
the choice key lightened in the same color as the sample stimulus before with one

peck (correct response) was rewarded immediately with free access to food for 3 s.
Choosing the complementary color which was not shown at the previous sample
stimulus (incorrect answer), was punished with a 10 s time-out period in darkness.
The next trial started after a 15 s inter-trial interval. Each session consisted of 80
trials. The order in which colors were presented was randomized, so that pigeons
could not learn a fixed sequence of presentation of the stimuli (Fig. 1).

Pigeons were first trained on a 0 s delay task until they reached a performance
level of 80% correct matches in at least three subsequent sessions. Afterwards the
delay level was augmented from 0 to 1 s delay until they reached criterion after
which the delay was increased again to 2 s and later up to a maximum of a 4 s delay.

During the last eight sessions before surgery, all pigeons had to reach an overall
criterion of 80% correct responses on the maximum 4 s delay. After surgery, animals
were given a recovery period with no testing sessions and free access to food and
water for 1 week. Then deprivation and testing started again until the birds reached
the same criterion as before surgery. Upon reaching this criterion, all behavioral
experiments were combined with reverse microdialysis.

2.4. Surgery

Pigeons were anaesthetized with ketavet (40 mg/kg i.m.; Upjohn) and xylazin
(8 mg/kg i.m.; Rompun, Bayer). Stainless steel guide cannulae with a screw cap (NCL:
0.75 mm o.d., 14 mm in length; MSt: 0.75 mm o.d., 16 mm in length) were implanted
stereotaxically, using the pigeons brain atlas from Karten and Hodos [45]. The coor-
dinates for left NCL, as defined by Waldmann and Güntürkün [78] were A: 5.0; L:
7.5; V: 1.0 and for left MSt A: 11.0; L: 2.5; V: 5.7. Guide cannulae were fixed with
dental acrylic and temporarily closed with a wire to prevent infections. For reversed
in vivo microdialysis implants were made unilateral because our established sys-
tem did not enable us to implant cannulae in the MSt of both hemispheres. Hence,
implants were made unilateral in the left hemisphere, as memory traces are mostly
left hemisphere-based [35]. After surgery, the animals were moved back into their
cages and allowed to recover for 5 days with free access to food and water.

2.5. In vivo microdialysis and drugs

Self-made concentric microdialysis probes had a dialysis membrane of regener-
ated cellulose (i.d. 215 �m, o.d. 251 �m, membrane thickness 18 �m, cut-off 6 kDa;
Akzo, Wuppertal, Germany) glued to a stainless steel cannula (19 mm in length, 26 G,
i.d. 305 �m, o.d. 508 �m; Small Parts, Miami, USA). The total length of the membrane
was 3.3 mm, with an effective length of the active membrane of 2.5 mm (0.4 mm at
the beginning and at the end were glue sealed). A polyethylene tube (i.d. 510 �m,
o.d. 1500 �m; Kleinfeld Labortechnik GmbH, Gehrden, Germany) was fixed to the
end of the stainless steel cannula and served as inlet. A fused silica capillary inside
the probe (i.d. 75 �m, o.d. 150 �m; Cil Cluzeau, Sainte Foy la Grande, France) covered
with a polyethylene tube (i.d. 280 �m, o.d. 600 �m; Kleinfeld Labortechnik GmbH,
Gehrden, Germany) served as outlet.

The selective D1-like agonist SKF81297 hydrobromide (RBI Natick, MD, USA)
and the selective D1-like antagonist SCH23390 hydrochloride (RBI Natick) were dis-
solved in Ringer solution at a concentration of 10 �M [75]. Both drugs have an activity
comparable with DA itself [73] and higher doses up to 1 mM of SCH23390 lead to
sedation and motor impairments [1], while excessive stimulation via D1 receptors
agents leads to higher locomotor activity [6]. As reviewed by Castner and Williams
stimulation or blockade of D1 receptors produces an inverted U-shaped function
of working memory in a dose-dependent manner. Because drugs were constantly
infused into the fronto-striatal system during the task, we decided to choose the
concentration of 10 �M for both drugs which had proved effective at the electro-
physiological level [75,30] and previously successfully altered behavior at a lower
concentration after injecting into the NCL, but did not produce motor or motiva-
tional deficits after intraPFC/NCL infusions [16,89,32]. Pharmacological migration
of the infused compounds was not detected, and concentrations of dopaminergic
drugs needed to be relatively high (up to 10 mM) to reach substantial brain con-
centration at a distance of 1 mm from the microdiaylsis probe [84]. Conclusively,
it is unlikely that the D1 agonist or the D1 antagonist spread far into surrounding
structures like from the NCL into the overlaying lateroventral hippocampus complex
(CDL, area corticoidea dorsolateralis), or into the medial nidopallium caudale and
from the MSt into the nucleus accumbens and the Nidopallium. The stock solution
of SCH23390 and SKF81297 was aliquoted in Eppendorf tubes and frozen at −80 ◦C
for later use. Ringer solution (Fresenius GmbH, Bad Homburg, Germany) was used
in control sessions.

For reversed in vivo microdialysis pigeons were transferred into the operant
chamber. The microdialysis probes were inserted into the guide cannulae of the
NCL and MSt and connected via a dual-channel-Swivel (Axel Semrau GmbH & Co,
Germany) with a microinfusion pump (PHD 2000 Infusion, Harvard Apparatus). The
swivel was fixed on a freely moving arm on the top of the chamber to allow the
pigeons for moving. Microsyringes (1 ml, CMA, Wuppertal, Germany) were used
to perfuse the drugs or Ringer solution constantly at a flow rate of 1 �l/min. No
dialysates were collected in our experiments. After inserting the probes, perfusion
started immediately and pigeons were given a 15 min habituation period before
testing sessions started. On day one and three of each week only Ringer solution was
infused through reverse microdialysis while pigeons performed the DMTS-task. On
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Fig. 1. Schematic illustration of the delayed-matching-to-sample task. Each trial started with the presentation of either a green (light grey) or red (dark grey) stimulus as
SAMPLE on the central key. After 15 pecks a 4-s DELAY period started in which the animals had to hold information about the stimulus online. Then the side keys lit, starting
the CHOICE period. After a correct choice a 3-s REWARD phase began, followed by a 15-s inter-trial interval (ITI).

day two and four either SKF81297 or SCH23390 were infused in a balanced design
and in randomized order among the pigeons. On each experimental day animals
had to perform two DMTS sessions consisting of 80 trials each. Animals were tested
on four consecutive days per week over a period of 4 weeks, except for two animals
who were tested for 2 and 3 weeks only. At the end of each experimental day, the
microdialysis probes were removed and the guide cannulae were resealed with a
wire. Pigeons were then transferred back into their cages.

2.6. Histology and reconstruction of the cannula positions

After the experiments, pigeons were injected with heparin (1.000 IU, i.m.) 15 min
before they were deeply anaesthetized with Equithesin (0.5 ml/100 g body weight,
i.m.) and perfused intracardially with 0.9% saline followed by a 4% phosphate-
buffered paraformaldehyde solution. Brains were removed, sectioned into 40 �m

frontal slices and stained with cresyl violet following standard histological proce-
dures. Positions of the guide cannulae in the left NCL and left MSt were histological
verified and determined according to the atlas of Karten and Hodos and the anatomic
division of the NCL as defined by Waldmann and Güntürkün. Photographs were taken
with an AxioCam color camera attached to an Olympus BH2 microscope. Digital
images were edited with Adobe® Photoshop 5.5.

Histological analysis confirmed the correct positioning of all cannulae in NCL
and MSt (Fig. 2).

2.7. Data analysis

2.7.1. Behavior
The behavior during each DMTS session was analyzed in terms of overall per-

formance, i.e. percent correct responses, reaction time, i.e. the time between onset

Fig. 2. Location of microdialysis probes in the left nidopallium caudolaterale (NCL) and left medial striatum (MSt) in schematic coronal sections of the pigeon brain (Karten
and Hodos [45]). The anterior distance from the zero point is labeled in each of the four sections. The areas of the active membranes of the dialysis probes are indicated by
black lines in NCL and MSt. Abbreviations: A, Arcopallium, E, ectopallium; HA, hyperpallium accessorium; Hp, hippocampus; M, mesopallium; N, nidopallium; Nc, nidopallium
caudale; TO, tectum opticum.
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of the two lateral choice keys and the time of the first peck to either the matching
or non-matching choice key, and overall session time, i.e. time between the onset
of the first trial and end of the trial 80. These measures were calculated for each
session.

For each animal, the median performance was calculated over all control ses-
sions which were conducted during infusion with Ringer solution. This median
characterizes the performance of each individual over several sessions and weeks.
But performance of the animals varied from week to week. Thus, for each individual
the median performance during control sessions in 1 week was compared with the
median derived from all control sessions. If the weekly median performance was
above the overall median performance, all data collected during that week were
considered to be collected while the animal was in a high performance state. When
the weekly median performance was below the overall median performance, then
data were taken during the animal’s low performance state.

For further analysis, all behavioral data (performance, reaction time, overall
time) from each individual were averaged over low performance states and high
performance states. Effects of the infusion of Ringer, SKF81297 or SCH23390 on the
behavioral measures were analyzed by parametric ANOVAs, followed by Fisher LSD
tests for post hoc analysis. To be able to directly compare the effects of SKF81297 or
SCH23390 infusions during low and high states of performance, performance levels
were normalized to the weekly performance, which was set to 100%. The relative per-
cent differences between the performances under control conditions (100%) versus
treatment conditions under low and high states of performance were then analyzed
by parametric ANOVAs. Fisher LSD tests were used for post hoc analysis. The level
of significance was set at p < 0.05.

3. Results

In control sessions, under infusion of Ringer solution, all 10
pigeons performed the DMTS-task on average at a performance
level of 84.86 ± 11.40% (mean ± S.D.) (Fig. 3). Reaction times in
seconds were 1.22 ± 0.36 s and control sessions lasted on average
4621.93 ± 4856.72 s.

All behavioral data were analyzed based on the distinction
between low and high states of performance. For the performance
levels, the ANOVA revealed significant differences between treat-
ment and states (F(2,36) = 19.712, p < 0.001).

Performance levels in control sessions during low periods were
82.56 ± 9.14% correct responses and during the strong periods
91.56 ± 7.19% correct responses. As expected these performance
levels differed significantly (p < 0.024, Fisher LSD).

Performance levels in the low state under infusion of the D1
agonist SKF81297 were 86.88 ± 9.43% correct responses and in the
high state 89.25 ± 6.75% correct responses. Post hoc analysis with
Fisher LSD tests showed significant differences between these lev-
els to those in the control condition (low: p < 0.001; high: p < 0.02).

Fig. 3. Median percent correct answers in the DMTS-task for each pigeon during
infusion of vehicle (Ringer solution) into the NCL and the MSt. The black bar rep-
resent the median of all control sessions (Ringer all), black squares represent the
percentage correct in control sessions in high (Ringer high) and white squares rep-
resent the percentage correct during low (Ringer low) performing periods. Numbers
represent animals. As depicted, performances of animals varied widely in each and
between animals.

Fig. 4. Percent correct answers in the DMTS-task in high (left) and low (right)
performing periods under administration of the D1 agonist SKF81297 and the
D1 antagonist SCH23390 in comparison to vehicle (Ringer). Error bars represent
standard error means (n = 10 pigeons). Lines or dotted lines represent significant
differences.

Performance levels in the low state under infusion of the D1 antago-
nist SCH23390 were 83.19 ± 9.38% correct responses and in the high
state 92.18 ± 6.43% correct responses. Post hoc analysis with Fisher
LSD tests showed no differences between these levels to those in
the control condition (low: p = 0.48; high: p = 0.48) (Fig. 4).

To analyze directly the effects of SCH23390 and SKF81297
between low and high states of performance, performance levels
were normalized to the baseline condition. The relative differ-
ences of the percent correct responses under infusion of either
SKF 81297 or SCH23390 to baseline (Ringer infusion) were calcu-
lated. The ANOVA revealed significant differences between states
(F(1,18) = 6.389, p = 0.021) and treatment and states on the relative
differences in % correct responses (F(1,18) = 32.893, p < 0.001). In
the low period, the relative differences in % correct performance
under infusion of SCH23390 were 0.79 ± 3.54% and under infusion
of SKF81297 5.32 ± 4.51%. So performance levels in the DMTS-task
were enhanced under infusion of SKF81297 (p = 0.002, Fisher LSD).
In the high state, the relative differences in % correct responses
under infusion of SCH23390 were 0.80 ± 3.16% and under infusion
of SKF81297 −2.01 ± 2.71%. Under this state SKF 81297 impaired
the performance in the DMTS-task (p = 0.006, Fisher LSD). The post
hoc analyses showed also a significant difference between changes
by SKF81297 in high and low states (p < 0.001), while these effect
could be not observed for SCH23390 (p = 0.998) (Fig. 5).

The ANOVA revealed no differences between low and high per-
formance states in terms of reaction times between treatment
and state (F(2,28) = 1.569, p = 0.226). The reaction times under infu-

Fig. 5. Differences in correct responses relative to baseline (set to 100%) in the
DMTS-task under prefronto-striatal infusions of SCH23390 and SKF81297. Error bars
represent standard error means (n = 10 pigeons). Lines or dotted lines represent
significant differences.
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sion of Ringer were 1.15 ± 0.28 s in the low and 1.34 ± 0.36 s in
the high state. The reaction times under infusion of SCH23390
were 1.16 ± 0.31 s in the low and 1.24 ± 0.35 s in the high state or
SKF81297 were 1.17 ± 0.26 s in the low and 1.24 ± 0.41 s in the high
state. Due to technical reasons, reaction times of only EIGHT pigeons
could be included in the analyses.

No differences in the overall session times under infusion
of Ringer (low: 3805.04 ± 2166.00 s, high: 3124.85 ± 803.94 s) or
SCH23390 (low: 3606.80 ± 2205.15 s, high: 3033.65 ± 1073.14 s) or
SKF81297 (low: 3777.61 ± 1780.89 s, high: 2902.18 ± 807.34 s) could
be detected with the ANOVA (F(2,36) = 0.182, p = 0.834).

4. Discussion

The present study reveals that the D1 agonist SKF81297
increased WM performance in a delay-matching-to-sample task
during low cognitive performance states when administrated into
the prefronto-striatal system of the pigeon. This effect was reversed
when infusions were administered during high cognitive perfor-
mance states. Thus, the effect of the D1 agonist was dependent on
the cognitive state of the animals. Infusions of the D1 antagonist
SCH23390 had no effect. Overall, agonistic D1 receptor stimulation
can decrease or enhance cognitive performance, dependent on the
cognitive baseline performance state of the individual. These data
support the assumption that the effect of D1 receptor stimulation
on WM follows an inverted U-curve [89].

Numerous studies in pigeons [17,42,44,69,83,87] and other
animals, including humans [12–14,19,26,51,57,81,86] have shown
that WM as tested with delay tasks depend on DA transmission
within the prefronto-striatal system. Earlier investigations reported
that blockade of D1 receptors in the mPFC of rats only impaired
attentional accuracy in rats that displayed high levels of baseline
performance. Moreover, infusion of the D1 receptor agonist SKF
38393 caused the opposite effect, improving performance in sub-
jects whose baseline levels of attentional accuracy were low [32]. In
addition, performance in trials with longer delays was improved by
SKF81297 in subjects with low baseline performance, while it was
deteriorated in trials with shorter delays in high performing rats
[23]. Those differences in baseline performance were explained by
the finding of Phillips et al. [64] that the magnitude of DA-efflux in
the PFC in a delayed-response task is predictive for the accuracy of
recall after different delay-periods, with lower levels of DA-efflux
associated with poorer performance. The present findings extend
these results by using the within-subject variability of well-trained
pigeons. We show that infusion of the D1 receptor agonist SKF81297
within the prefronto-striatal system produce contrasting results in
WM performance that are opposite to the current cognitive perfor-
mance state of the individual. As mentioned above, fluctuations in
baseline performance possibly reflect different dopamine levels in
the NCL and the MSt at different time courses, leading to suboptimal
levels of D1 stimulation in the low state and exerting improvements
in performance after exogenous infusion of a D1 agonist. At a high
state, i.e. DA transmission is optimal, additional stimulation of D1
receptors can exert a number of actions on pre- and postsynap-
tic neurons that lead to a reduction of neural excitability in the PFC
and WM deficits [85,88]. This in turn leads to the inverted U-shaped
function of D1 stimulation and WM performance [89].

In contrast to the effects of the D1 agonist SKF81297 (10 �M),
prefronto-striatal infusions of the D1 antagonist SCH23390 at the
same dose produced no performance alterations. One reason for
the lack of direct influence on performance could be the low dose of
SCH23390. However, earlier investigations applying the D1 antag-
onist in a 10-fold lower concentration in the NCL during a reversal
task, which also recruits prefronto-striatal circuitry, resulted in

impairments in the task [16]. Additionally, studies with reverse
microdialysis reported effects of SCH23390 with concentrations
varying from 10 nM [63] up to 100 �M [70]. But depending on the
recovery of the microdialysis probes [7] drug concentrations could
vary. In contrast to the D1 blocking effects of SCH23390, DA release
is increased in the fronto-striatal system during the DMTS-task [44]
and SCH23390 can act as an antagonist at 5-HT2 receptors, which
also increases cortical DA release [59]. Therefore, it is conceivable
that the low dose of the D1 antagonist used in our study was not
sufficient to induce cognitive decline in the DMTS-task.

Lesions of the striatum and the PFC led to deficits in WM
[18,28,38] or changed neuronal activity in these regions during
delayed response tasks [24]. The loss of brain DA like in Parkinson‘s
disease led to impairments in fronto-striatal cognitive function,
resulting in WM deficits [50]. As D1 receptor signaling in the PFC
and the striatum is central to working memory [29], it is likely
that functional connectivity between these areas can be influenced
by D1 receptor manipulation. Both areas are highly connected via
the prefronto-striatal loop [2,15,58]. Similar to mammals, lesions of
the NCL in pigeons resulted in delay specific deficits [17], whereas
lesions in the MSt produced deficits in cognitive flexibility [83].
Both areas have a high density of D1 receptors [20] and the connec-
tivity between the NCL and the MSt resembles those in mammals
[48,65]. One possible route to influence the inputs to the frontal
cortex via the striatum is the dopaminergic signaling. Manipula-
tions of the dopaminergic system in the PFC by 6-OHDA lesions
influenced the DA level in the striatum [68]. Furthermore, DA is
increased in both, PFC/NCL and striatum during WM experiments
[44,51,57,64,81]. Computational studies suggest that DA controls a
bistable up or down state in striatal activity, which possibly pre-
vents alterations of prefrontal activity due to internal noise [33,37].
Hence, we assume that the interplay of the dopaminergic systems
between the PFC/NCL and the striatum in the prefronto-striatal loop
is critical for cognitive performance during WM. Therefore in this
study, we decided to manipulate the whole system and investi-
gate the effects of D1 stimulation or antagonism during WM in the
prefronto-striatal network. This approach is supported by a recent
finding from Cools et al. [14], showing that the WM performance
is predictable by the DA level in the striatum like in the PFC, with
good performance at high DA levels and poor performance at low
DA levels. Furthermore, Nagano-Saito et al. [61] demonstrated that
DA depletion impairs the prefronto-striatal network during WM by
eliminating functional connectivity between these regions.

The individual WM performances of our pigeons were not con-
stant over time. Although all animals performed the DMTS-task on a
reasonably high level, they nevertheless showed daily/weekly cog-
nitive fluctuations. Depending on their current state, stimulation of
the prefronto-striatal system with the D1 agonist SKF81297 shifted
their performance level up or down. Presently, we can only specu-
late about the causes of the daily/weekly fluctuations. For example,
glucocorticoid levels could differ between treatments. It is known
that their suppression impairs WM through a D1 receptor mediated
hypodopaminergic mechanism in the PFC [60]. Similarly, accord-
ing to circadian rhythm or genetic background of the individual DA
transmission fluctuates over days or weeks [26,27,55,56].

Alterations of motivation are a possible further cause for cog-
nitive fluctuations. We always took care to keep food deprivation
levels constant, but motivation can still vary over time. In the
dorsolateral PFC, neuronal activity reflects both WM and reward
expectancy [79,80]. Delay-related activity is modulated in a quan-
titative fashion, such that a larger reward leads to increased
delay-related activity relative to a smaller reward [49]. Additional
studies suggest that motivational information not only modulates
PFC cellular activity, but both cognition and motivation are inte-
grated at single-cell level in the lateral PFC [47,46]. Thus, the activity
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of prefrontal neurons does not only code motivational aspects,
but rather codes the reward within the context of rewarding [82].
As DA release in the PFC is increased during both reward and
retrieval of trial specific information [64,67,74] fluctuations in DA
concentrations can also influence motivational aspects and, thus,
affect performance. However, Goto and Grace [31] showed that
alternations of DA release in the nucleus accumbens influence hip-
pocampal or PFC evoked responses in the accumbens interacting
with goal-directed behavior. Since these fluctuations are mainly
controlled by the midbrain-accumbens projections, they are out-
side of the influence area of our dialysis probes [3]. Thus, it is likely
that our manipulations primarily affected the cognitive aspect of
the task, while motivational fluctuations influences were modu-
lated via limbic projections.

Like the PFC, the NCL is a higher order association area and is
closely tied to all secondary sensory and motor structures [48].
The NCL receives a rich dopaminergic innervation [20] and resem-
bles the PFC with respect to its connections with the amygdala,
the nucleus accumbens, and visceral structures [3,48]. The PFC is
known to serve complex functions that are usually subsumed under
the term ‘executive control’. Similarly, the NCL was also shown to
mediate various aspects of executive functions like working mem-
ory [17], reversal learning [36], delayed alternation [34], extinction
learning [53], timing [41], and response selection [54]. Single unit
recordings in NCL reveal cells that code for active working memory
[69], reward amount [43], and subjective reward value [42]. Simi-
larly, neurochemical experiments reveal that dopamine within NCL
is released during short-term memory [44] in a volume transmis-
sion mode, that means DA diffuses from the point of release through
the extracellular space to distant non-synaptic receptor sites [5].
Taken together, the mammalian PFC and the avian NCL show an
astonishing degree of resemblance in terms of anatomical, cogni-
tive, electrophysiological, and neurochemical characteristics. Based
on topographical and genetic arguments [35], however, they do not
seem to be homologous as a telencephalic entity within the pallium
but probably represent a case of evolutionary convergence. Thus,
the PFC and the NCL are functional analogues. Due to these func-
tional equivalences, we assume that our data from pigeons also to
apply to dopaminergic mechanisms in mammals.

The present results show that fluctuations in cognitive perfor-
mance are adjustable via D1 receptor stimulation. The effect of
D1 receptor manipulation depends on the different baseline per-
formance level of the individual. Here, it is shown that factors
determining these baseline differences in performance need not
to be necessarily age [11] or general learning performance [32].
In fact, it seems to be that cognitive skills underlie dynamical
processes, which are possibly controlled by DA in the prefronto-
striatal connectivity. This implicates that to increase or manipulate
these skills further tests to determine the baseline level are
required.
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