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quires a brain composition that increases the ability to asso-
ciate and memorize diverse stimuli in order to execute com-
plex motor output. Since apes show a similar correlation of 
cerebral growth and cognitive abilities, the evolution of ad-
vanced cognitive skills appears to have evolved indepen-
dently in birds and mammals but with a similar neural or-
chestration.  Copyright © 2010 S. Karger AG, Basel 

 Introduction 

 Higher cognitive abilities have been linked to increased 
brain size in mammals. These superior abilities are re-
flected in different domains such as tool use [Reader and 
Laland, 2002], social skills [Byrne and Corp, 2004] and 
behavioral flexibility [Sol et al., 2008]. Higher levels of be-
havioral flexibility also correlate with increased brain size 
in birds [Portmann, 1946; Lefebvre et al., 1997; Iwaniuk et 
al., 2004; Cnotka et al., 2008]. The volume of certain as-
sociative pallial structures in the avian forebrain are espe-
cially good predictors of innovative foraging behavior and 
tool use [Timmermanns et al., 2000; Lefebvre et al., 2002, 
2004; Lefebvre and Sol, 2008]. Among the class of birds 
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 Abstract 

 Animals with a high rate of innovative and associative-based 
behavior usually have large brains. New Caledonian (NC) 
crows stand out due to their tool manufacture, their general-
ized problem-solving abilities and an extremely high degree 
of encephalization. It is generally assumed that this increased 
brain size is due to the ability to process, associate and mem-
orize diverse stimuli, thereby enhancing the propensity to 
invent new and complex behaviors in adaptive ways. How-
ever, this premise lacks firm empirical support since en-
cephalization could also result from an increase of only per-
ceptual and/or motor areas. Here, we compared the brain 
structures of NC crows with those of carrion crows, jays and 
sparrows. The brains of NC crows were characterized by a 
relatively large mesopallium, striatopallidal complex, sep-
tum and tegmentum. These structures mostly deal with as-
sociation and motor-learning. This supports the hypothesis 
that the evolution of innovative or complex behavior re-
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(Aves), the corvid family is especially renowned for their 
flexible behavior and cognitive skills [Rehkämper et al., 
1991; Iwaniuk and Hurd, 2005; Sol et al., 2005]. New Cale-
donian (NC) crows ( Corvus moneduloides)  display ex-
traordinary skills in making and using tools to acquire 
otherwise unobtainable food [Hunt, 1996; Hunt and Gray, 
2003, 2004]. These birds manufacture an impressive range 
of both stick and leaf tools [Hunt and Gray, 2002, 2003, 
2004a], may have evolved rudimentary cumulative tech-
nology [Hunt and Gray, 2003] and can bend unfamiliar 
material like wire into functional tools [Weir et al., 2002]. 
NC crows can also use one tool to get another (metatool 
use) [Taylor et al., 2007] and solve complex physical cog-
nition tasks that require causal reasoning [Taylor et al., 
2009]. These skills rival those of apes [Emery and Clayton, 
2004; Emery, 2006].

  NC crows have one of the largest avian brains for their 
body size [Cnotka et al., 2008]. However, when brains 
evolve to a larger size it is mostly by a differential increase 
in certain areas and not by a change in the size of all areas, 
which means that encephalization can result from a mo-
saic-like pattern of differential growth of brain compo-
nents [Rehkämper et al., 2001; Iwaniuk et al., 2004; Reh-
kämper et al., 2008]. Thus, an investigation of the asso-
ciation between encephalization and cognitive skills 
requires the comparative analysis of separate brain struc-
tures. In a first attempt to identify which parts of the NC 
crow’s brain are larger than in other birds, we compared 
the volume of 15 brain areas between NC crows and three 
other passerine species [carrion crows  (Corvus corone 
corone) , European jays  (Garrulus glandarius)  and domes-
tic sparrows  (Passer domesticus) ]. Among birds, Passeri-
formes in general have relatively large brains and telence-
phalic volumes [Rehkämper et al., 1991; Burish et al., 
2004; Iwaniuk and Hurd, 2005]. The size of the nidopal-
lium is the best predictor of ‘true’ tool use [Lefebvre et al., 
2002]; therefore this structure in NC crows should be rel-
atively large when compared to non-tool users. However, 
the size of the mesopallium is the best predictor of behav-
ioral innovation and flexibility generally in birds [Tim-
mermanns et al., 2000]. The high level of tool skills in NC 
crows (e.g. their manufacture and use of hooks) and their 
demonstrated cognitive ability in tool- and non-tool-re-
lated experiments suggest that their behavior is based on 
a high level of cognitive ability generally. Therefore, we 
also predicted that the mesopallium in NC crows would 
be relatively enlarged. As well as the mesopallium and the 
nidopallium, we investigated if other associative areas 
such as the striatopallidal complex showed differential 
size increase in the NC crow.

  Material and Methods 

 Subjects 
 We collected the brains of 5 NC crows  (Corvus moneduloides) , 

5 European carrion crows  (C. corone corone) , 2 European jays  (G. 
glandarius)  and 4 sparrows  (P. domesticus) . All the animals were 
captured in their original habitat and weighed immediately after 
capture.

  Brain Collection 
 The 16 individuals were euthanized with an overdose of pento-

barbital. After cardiac arrest was confirmed, they were perfused 
with physiological saline solution and a fixative (Bodian’s fluid). 
The brains were carefully dissected, weighed, sectioned and stained 
for perikarya. We determined total brain volume and the volume 
of 15 distinct areas: hyperpallium apicale, hyperpallium densocel-
lulare, mesopallium, nidopallium, arcopallium, entopallium, stria-
topallidal complex (including the globus pallidus, lateral striatum, 
medial striatum and the tuberculum olfactorium), septum, hippo-
campus, bulbus olfactorius, tegmentum (this was the brain part 
caudal to the diencephalon including the medulla oblongata, but 
excluded the tectum and cerebellum), cerebellum, tectum opti-
cum, tractus opticus and diencephalon. For carrion crows, jays and 
sparrows, volumetric data other than for the arco- and entopallium 
were taken from Rehkämper et al. [1991]; we measured the arco- 
and entopallium from the brain slides used in the 1991 paper.

  Analyses 
 Net brain volume was calculated as the sum of the single brain 

components. In contrast to total brain volume, the net brain vol-
ume does not include the volume of leptomeninges, ventricles, 
choroid plexus and remains of brain nerves. The nidopallium in-
cludes the basal nucleus and field L, and the arcopallium includes 
the nucleus taeniae amygdalae and parts of the tractus occipito-
mesencephalicus.

  To compare volumes of brain structures in different species 
with different body weights, allometric methods were used. This 
involved the calculation of a regression line that expressed the 
brain (or brain component) size/body weight relationship. We 
used body weight to account for body size variation because of the 
well-proven correlation between brain (structure) size and body 
weight [Snell, 1892; Dubois, 1897; Stephan et al., 1986, 1988; Reh-
kämper et al., 1991; Baron et al., 1996]. Alternative means of ac-
counting for variation in body size such as using net brain volume 
or brain stem volume were unsuitable because we wanted to in-
vestigate possible enlargement in these parts as well.

  To obtain a reliable regression slope for passerines, the body 
weight range between the smallest and largest species should ide-
ally be a factor of 10; the body weight range for the four species in 
our study met this criteria. The species that we used to calculate 
the regression line were also part of a biologically appropriate 
group, the order Passeriformes [Sibley and Alquist, 1990]. The 
slopes of brain (or brain component) size/body weight relations 
were calculated according to the formula:

  log  brain   (or brain component)   size 
= log  b  +  a   !  log  body weight 

  where ‘a’ is the slope and ‘b’ the intersection with the y axis. Re-
gression lines were calculated for each brain structure using data 
points for all 16 individuals [Warton et al., 2006]. 
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 To test for differences in brain structure volumes between spe-
cies we calculated allometric size indices (actual brain component 
size/expected brain component size). The indices represent the 
distance of individual data points from the regression line. The 
expected brain (or brain component) size is the value on the re-
gression line that corresponds to a given individual body weight. 
The methods that we used for the preparation of brain material, 
establishing boundaries between brain areas, measurements and 
for allometric calculations are taken from the literature [Stokes et 
al., 1974; Stephan et al., 1988; Rehkämper et al., 1991; Rehkämper 
and Zilles, 1991].

  To test the hypothesis that the tool use and considerable cogni-
tive skills of NC crows are detectable in the size of associative 
forebrain components, we compared the allometric indices for the 
NC crow to: (1) the pooled data for the three other passerine spe-
cies (European jays, sparrows and carrion crows), and (2) the car-
rion crow alone. We carried out the first comparison because we 
wished to compare the NC crow with passerines in general. The 
three species for which we pooled data are appropriate representa-
tives of Passeriformes to compare with the NC crow since they all 
have relatively large brains [Portmann, 1947; Rehkämper et al., 
1991; Boire and Baron, 1994]. The alternative of testing each spe-
cies separately with NC crows was problematic because of low 
sample sizes for the European jay and the sparrow. We carried out 
the second comparison with the carrion crow to directly rule out 
that any enlargement of structures in the NC crow was due to an 

evolved characteristic of the genus  Corvus  associated with gener-
alist foraging behavior.

  We tested for differences between allometric indices using t 
tests. We adjusted the  �  level to account for multiple pair-wise t 
tests using the Bonferroni correction; the  �  level was thus set to 
0.025.

  Results 

 The brain of the NC crow has conspicuously large 
hemispheres ( fig. 1 ). We provide the average body weights, 
brain weights and brain area volumes for the four study 
species in  table  1 . The five NC crows had significantly 
larger allometric indices for the mesopallium (t = 3.917; 
p = 0.002), striatopallidal complex (t = 4.816, p  !  0.001), 
septum (t = 6.940, p  !  0.001) and the tegmentum (t = 
3.705, p = 0.002) compared to the pooled data for the 
three other passerines ( table 2 ).  Figures 2  and  3  give the 
results of the comparison for the mesopallium. The nido-
pallium was also larger in the NC crow, but this differ-
ence was not significant with the adjusted  �  level (t = 

a b

c

  Fig. 1.  The brain of the NC crow.  a ,  b  Lat-
eral and dorsal view of an NC crow brain. 
 c  Coronal section through the brain of a 
NC crow to illustrate some subdivisions. 
Di = Diencephalon; E = entopallium; Ha = 
hyperpallium apicale; Hi = hippocampus; 
M = mesopallium; N = nidopallium; Stc = 
striatopallidal complex; Tc = tectum opti-
cum; II = tractus opticus. Gallyas stain. 
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Table 1.  Volumes of brain structures (mm3) and body weight (g) in four Passeriformes species

Sparrow (n = 4) European jay (n = 2) Carrion crow (n = 5) NC crow (n = 5)

Brain volumes
Total brain volume 954.88814.602 3,735.538245.713 9,573.538985.749 7,295.408741.105
Net brain volume 935.93813.391 3,647.918242.726 9,203.1181,025.258 7,227.898721.664
Hyperpallium apicale 91.0889.517 381.8486.364 963.228135.741 711.258118.957
Hyperpallium densocellulare 26.2185.274 57.8887.312 129.37825.310 78.82817.087
Mesopallium 100.0588.221 452.5589.489 1,397.418190.791 1,158.728121.010
Nidopallium 272.99821.755 1,106.21814.616 3,449.758447.439 2,546.558359.119
Entopallium 5.5781.140 27.3387.408 55.5287.695 42.3885.845
Arcopallium 31.4883.775 110.3584.299 266.15826.186 179.05817.703
Striatopallidal complex 97.3186.415 365.27853.217 848.23877.184 768.92860.682
Hippocampus 8.5581.025 25.7482.100 26.5187.845 29.20810.846
Septum 4.0380.130 17.1281.711 29.3283.478 42.5083.341
Bulbus olfactorius 0.4880.064 1.0480.368 2.0180.372 1.4380.382
Telencephalon 637.75828.607 2,545.26870.923 7,167.488864.597 5,558.558664.442
Diencephalon 44.9380.747 180.09832.089 283.52832.773 205.51832.683
Tractus opticus 13.2582.229 63.06822.691 126.04828.982 77.6484.442
Tectum 62.6881.142 244.67828.157 356.94849.750 303.79824.484
Tegmentum 84.4285.430 283.32850.685 500.95863.375 489.68817.613
Cerebellum 92.90810.58 331.51838.191 768.17894.855 592.74835.86
Body weight, g 27.1882.635 139.67816.447 466.73871.082 277.25829.874

V alues are means 8 SD.

Table 2.  Allometric brain volume indices in four Passeriformes species

S+J+C
(n = 11)

Carrion crow
(n = 5)

NC crow
(n = 5)

Total brain volume (a = 0.822, b = 1.816) 0.9680.112 1.0180.157 1.1080.159
Net brain volume (a = 0.818, b = 1.814) 0.9680.107 0.9480.147 1.1280.161
Hyperpallium apicale (a = 0.838, b = 0.771) 0.9880.133 0.9580.133 1.0980.199
Hyperpallium densocellulare (a = 0.529, b = 0.647) 1.0780.204 1.1480.223 0.9280.249
Mesopallium (a = 0.959, b = 0.64) 0.9280.108* 0.8880.026* 1.2280.198
Nidopallium (a = 0.908, b = 1.141) 0.9680.103 0.9480.03 1.1380.217
Entopallium (a = 0.826, b = –0.42) 0.9980.170 0.9280.162 1.0780.127
Arcopallium (a = 0.748, b = 0.428) 1.0180.085 1.0180.098 0.9980.114
Striatopallidal complex (a = 0.794, b = 0.869) 0.9380.087* 0.8880.113* 1.2080.144
Hippocampus (a = 0.408, b = 0.394) 0.9880.270 0.8780.234 1.2180.503
Septum (a = 0.775, b = –0.45) 0.8480.174* 0.7280.170* 1.5580.220
Bulbus olfactorius (a = 0.482, b = –1.013) 1.0480.204 1.0880.233 0.9880.295
Telencephalon (a = 0.876, b = 1.574) 0.9580.114 0.9480.137 1.1480.189
Diencephalon (a = 0.635, b = 0.771) 1.0380.194 0.9880.183 0.9980.189
Tractus opticus (a = 0.769, b = 0.039) 1.0680.284 1.0580.357 0.9580.124
Tectum (a = 0.616, b = 0.951) 0.9980.205 0.9280.204 1.0780.110
Tegmentum (a = 0.655, b = 1.015) 0.9480.143* 0.8880.183* 1.1980.083
Cerebellum (a = 0.754, b = 0.898) 0.9780.128 0.9680.196 1.0880.060

V alues are means 8 SD. S = Sparrow; J = European jay; C = European carrion crow; a = slope of the regression line; b = intersec-
tion with the y-axis. Asterisks indicate significant differences versus NC crows.
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2.174, p = 0.047). The comparison with the carrion crow 
 (C. corone corone)  also revealed significantly larger mean 
indices for NC crows in the above four structures (meso-
pallium: t = 3.742, p = 0.006; striatopallidal complex: t = 
–3.933, p = 0.004; septum: t = –6.027, p  !  0.001, and teg-
mentum: t = –3.504, p = 0.008).

  Discussion 

 Brain Structures 
 We found that four brain areas in NC crows are en-

larged compared to the three other passerine species: me-
sopallium, pallidostriatal complex, septum and tegmen-
tum. This finding supports our hypothesis that NC crows’ 
impressive tool and general problem-solving skills are as-
sociated with enlargement of associative and motor-relat-
ed structures in the forebrain.

  In the following we discuss this enlargement with re-
spect to adaptive increases of brain component size (‘en-
cephalization’). Theoretically, the enlargement that we 
found could also be due to adaptive decrease in body size 
without a corresponding decrease in brain size (‘somati-
zation’). The latter can occur in secondary dwarfism, e.g. 
in talapoin monkeys  Miopithecus talapoin  [Stephan et al., 
1988]. Somatization can also occur through an adaptive 
increase in body size [Towe and Mann, 1995]. Towe and 
Mann investigated two populations of Botta’s pocket go-

pher  (Thomomys bottae) , which had adapted to habitats 
with different food supply, and observed a selection to-
wards larger body sizes only. While it is possible, we think 
it is unlikely that somatization has occurred in any of our 
four study species.

  The mesopallium of NC crows is significantly larger 
than that of the three other passeriformes we studied. 
This finding is consistent with previous work showing 
that mesopallial size predicts innovative and flexible be-
havior generally in birds [Timmermanns et al., 2000; 
Lefebvre et al., 2002, 2004]. The mesopallium as a whole 
is a true associative forebrain area that is not reached by 
any direct sensory pathway. Its ventral part includes crit-
ical areas for vocalization learning in songbirds, parrots 
and hummingbirds [Jarvis and Mello, 2000]. Partly over-
lapping with these, the anteroventral mesopallium con-
tains a critical area for fast multimodal associative learn-
ing in the context of imprinting and avoidance learning 
[Rose, 2000; Horn, 2004]. A recent theory suggests that 
the mesopallium is also part of a circuit that controls se-
quencing and learning of motor actions [Feenders et al., 
2008]. Thus, the mesopallium is involved in diverse as-
sociative functions and the production of learned com-
plex motor sequences. The relative growth of this struc-
ture in NC crows makes it likely that the mental process-
es associated with the ability to manufacture and use 
tools are coupled with demands on multimodal forebrain 
systems.
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  Fig. 2.  Double logarithmic plot of mesopallium volume versus 
body weight for 16 individuals from four Passeriformes species.
a = 0.959; b = 0.64.  

  Fig. 3.  Mesopallium indices for 11 individuals from three Pas-
seriformes species  (Passer domesticus, Garrulus glandarius  and  C. 
corone corone)  compared to the indices for 5 NC crows. Individ-
ual data with means  8  SD;   *  *  p = 0.002. The error bars are offset 
from the data points for clarity. 
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  NC crows had higher striatopallidal volumes than the 
other three passeriform species. Different pallial entities 
project into the avian striatum in a manner that parallels 
the mammalian brain, particularly neopallial regions 
such as the isocortex; for the comparability of avian and 
mammalian brain areas we refer to Kuhlenbeck [1967–
1978], Rehkämper and Zilles [1991]; Rehkämper [1997]; 
Nieuwenhuys et al. [1998] and Reiner et al. [2004]. From 
here direct and indirect paths are sent back as loops to the 
pallium via a pallidothalamic pathway [Reiner, 2002]. 
This system was previously thought to be a mere motor 
pathway in primates, but is now known to primarily sub-
serve action selection in the scope of various cognitive 
functions like categorization [Ashby et al., 2007], habit 
learning [Wickens et al., 2007] and context acquisition 
[Seger, 2008]. Cortical and striatal neurons form tight 
loops that change their firing rates in a correlated manner 
during the acquisition of various sensorimotor learning 
tasks [Brasted and Wise, 2004]. To enable these learning-
related changes in firing patterns, the projection of the 
ascending dopaminergic system is essential, which deliv-
ers a fast feedback about the outcome of an animal’s own 
executed behavior. The organization of the dopaminergic 
projection into the striatopallidal and the pallial system 
is highly similar in mammals and birds [Durstewitz et al., 
1999], and the striatopallidal complex is equivalent to 
that of the mammalian brain [Reiner et al., 2004]. These 
similarities between birds and mammals makes it likely 
that the relative increase of this complex in NC crows is 
associated with the cognitive and motor abilities of these 
birds to manufacture and apply tools to various known 
and novel problems.

  The nidopallium of NC crows is enlarged as well, but 
this difference is not significant. However, the enlarge-
ment is consistent with the previously reported larger ni-
dopallium size in true tool users [Timmermanns et al., 
2000]. Particularly with its associative caudolateral part 
(neostriatum caudolaterale), which is thought to be a 
functional equivalent of the mammalian prefrontal cor-
tex [Divac and Mogenson, 1985; Güntürkün, 2005], a rel-
ative increase of nidopallium volume suggests that this 
structure is part of the neural machinery required for 
cognitive skills associated with tool use. That the meso-
pallium rather than the nidopallium was significantly 
enlarged invites obvious speculation as to the contribu-
tion of these structures to tool skills. That is, the nidopal-
lium may have more to do with the cognitive and motor 
skills required for basic tool use, while an enlarged meso-
pallium may be required for the enhancement of basic 
tool skills.

  The relative increase of the tegmentum and the sep-
tum is interesting. The tegmentum bears structures that 
serve motor control [Nieuwenhuys et al., 1998] and there-
fore may be involved in the fine motor skills necessary for 
NC crows’ tool manufacture and use. However, the teg-
mentum is not exclusively somatomotoric but also has 
many sensory nuclei and vegetative control centers [Nieu-
wenhuys et al., 1998].

  The septum may integrate a variety of stimuli for the 
purpose of modulating complex behavior in a temporally, 
spatially and socially appropriate manner, probably in 
cooperation with the hippocampus [Goodson et al., 
2004]. However, it also has non-associative functions and 
the fact that the NC crow’s hippocampus is not enlarged 
might indicate that the septal enlargement is not linked 
to tool use and related cognitive behavior. Thus, the heu-
ristic value of the coincidence of the increase of these 
structures with observed superior cognitive skills in NC 
crows is limited.

  The comparison of the NC crow with carrion crow in-
dicates that the enlargement of the associative areas that 
we found is not due to an evolved characteristic of the ge-
nus  Corvus  associated with highly flexible generalist for-
aging behavior.

  Tool Manufacture and the Evolution of Cognition 
 Tool use per se is not an indicator of cognitive ability 

as a wide range of animals, including invertebrates, are 
reported to display tool use [Beck, 1980; Hansell, 2007]. 
However, the underlying mechanisms responsible for the 
evolution of a tool using lifestyle are probably very differ-
ent across animals [van Lawick-Goodall, 1970]. Evidence 
suggests that the mechanisms in primates and birds are 
closely associated with cognitive flexibility [Timmer-
manns et al., 2000; Lefebvre et al., 2002; Reader and La-
land, 2002; Emery and Clayton, 2004; Lefebvre et al., 
2004; Hunt, 2005], while those in animal groups like in-
vertebrates are rather rigid non-cognitive ones like those 
for construction behavior generally in these species [Han-
sell, 2005, 2007]. Although NC crows do not always at-
tend to the functional properties of the tools that they 
routinely use [Holzhaider et al., 2008], they use causal 
knowledge rather than associative learning to solve com-
plex physical problems [Taylor et al., 2007, 2009], indi-
vidually specialize for certain tools [Hunt and Gray, 2007] 
and have at least a rudimentary grasp of the physical 
properties of the objects they work on [Weir et al., 2002]. 
These observations indicate that tool manufacture and 
use in NC crows is not part of a rigid motor program, but 
comes from a flexible cognitive ability that makes these 
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birds the most proficient non-human tool manufactur-
ers. The increase of associative motor-learning-related 
areas that we found probably constitutes the neural basis 
for this cognitive ability. This finding conflicts with the 
recent suggestion that tool behavior in non-humans does 
not require special cognition but is rare simply because it 
is seldom useful [Hansell and Ruxton, 2008].

  Our findings on the sizes of brain structures in NC 
crows support the hypothesis of a similar evolution of 
avian and mammalian brains [Karten, 1969; Rehkämper 
et al., 1991; Emery and Clayton, 2004; Güntürkün, 2005]. 
We found that the mesopallium (a true associative pallial 
area) as well as the striatopallidal complex are relatively 
enlarged in NC crows. This is also the case for primates 
that display proportionally enlarged associative forebrain 
areas and striatal volumes compared to other mammals 
[Stephan et al., 1988; Rehkämper et al., 1991; Keverne et 
al., 1996; Barton and Harvey, 2000; Sol et al., 2008]. In-
deed, Stephan et al. [1988] was among the first to argue 
that the enlargement of the isocortex seen in apes and 
man is not due to primary regions like visual, auditory or 
somatosensory cortices, but to the non-primary areas in-
cluding the association cortex.

  The evolution of corvid and primate cognition and 
brain size has not been built on a similar evolution of the 
detailed architecture of their forebrains. While mammals 

have a laminar arrangement of their pallium thus form-
ing a cortex, the avian pallium displays a nuclear arrange-
ment with a layering restricted to relatively small areas 
[Rehkämper et al., 1984; Ebinger et al., 1992; Jarvis et al., 
2005]. Thus, cognition in corvids and primates evolved 
similarly with respect to mental capabilities, despite 
building on a different system of microcircuits [Gün-
türkün, 2005]. Our data, then, reveal an important addi-
tional principle of the evolution of cognitive functions: 
despite a different internal microstructure, an evolution-
ary increase of cognitive skills goes along with a volume 
increase of associative forebrain structures [Rehkämper 
et al., 1991]. In other words, enlargement of associative 
forebrain structures seems to be the default option in the 
evolution of cognitive skills.
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